Компьютерные подсказки

Вылетает Сталкер: Зов Припяти Программа икс рей 1

Stalker lost alpha гид по прохождению

Pony Express отслеживание почтовых отправлений

Pony Express – время и сроки доставки с Алиэкспресс в Россию

Застряли посылки с Алиэкспресс со статусом Hand over to airline: что делать?

РФ (Nigma) — интеллектуальная поисковая система

Данные для семантики — Яндекс Вордстат

Пиар ВКонтакте при помощи бирж: особенности и использование

Почему я не могу отправить сообщение?

Предупреждение «Подключение не защищено» в Google Chrome по протоколу https Нарушена конфиденциальность данных яндекс браузер

Всё что известно о смартфоне Samsung Galaxy S9 Аккумуляторная батарея Galaxy S9 и мощность

Темы оформления и русификация форума SMF, а так же установка компонента JFusion в Joomla

Автоматическое определение движка форума Позже board powered by smf

Коды в игре скайрим - зелья, ингредиенты, заклинания Код на ингредиенты скайрим

Подробная инструкция, как в "скайриме" открыть дверь золотым когтем

Цифровой регулятор мощности паяльника без помех. Регулятор мощности для паяльника своими руками — схемы и варианты монтажа

При работе с паяльником часто возникает необходимость регулировки его мощности. Это необходимо при выборе оптимальной температуры жала паяльника, так как при слишком низкой температуре плохо плавится припой, а при слишком высокой температуре происходит перегрев жала и его разрушение, а пайка оказывается некачественной.

Кроме того, любителю часто приходится выполнять при помощи пайки различные работы, для которых требуется разная мощность паяльника.

Для регулировки мощности используется большое количество различных схем. Примерами могут служить такие:

  • с переменным резистором;
  • с резистором и диодом;
  • с микросхемой и полевым транзистором;
  • с тиристором.

Самым простым регулятором мощности для паяльника является схема с переменным резистором . В таком варианте последовательно с паяльником включается переменный резистор. Недостатком такой схемы является то, что на элемента рассеивается большая мощность, которая уходит в тепло. Кроме того, переменный резистор большой мощности – это довольно дефицитный элемент.

Более сложным является метод с использованием резистора и выпрямляющего диода . В такой схеме имеется три режима работы. В максимальном режиме паяльник подключается непосредственно к сети. В рабочем режиме последовательно с инструментом включается резистор, определяющий оптимальный режим работы.

При включении в дежурном режиме паяльник питается через диод, который отсекает один полупериод переменного тока сети. В результате этого мощность паяльника уменьшается в два раза.

При использовании микросхемы и полевого транзистора предусмотрена регулировка мощности паяльника не только в меньшую, но и в большую сторону. При этом в схеме задействован выпрямительный мост, на выходе которого напряжение может достигать 300 В. Последовательно с , в комплектацию включен мощный полевой транзистор типа КП707В2.

Кроме регулятора температуры, из подручных деталей собирают и сам инструмент для пайки. , научиться не сложно. Необходимо лишь найти все составные элементы и следовать определенному порядку сборки.

Одним из самых распространенных инструментов для домашних работ, связанных с электричеством, является . Пользоваться ей умеет каждый, но существуют некоторые нюансы при эксплуатации у разных видов таких отверток.

Управление мощностью паяльника производится широтно-импульсным методом . Для этого на затвор подаются импульсы со средней частотой в 30 кГц, вырабатываемые с помощью мультивибратора, собранного на микросхеме типа К561ЛА7. Меняя частоту генерации, можно регулировать напряжение на паяльнике от десяти до 300 В. В результате изменяется ток инструмента и температура его нагрева.

Наиболее распространенным вариантом, используемым для регулировки мощности паяльника, является схема с использованием тиристора .

Состоит из небольшого числа недефицитных элементов, что дает возможность выполнить конструкцию такого регулятора в очень малых габаритах.

Особенности наиболее оптимального регулятора — с тиристором

В состав типовой схемы на тиристоре входят элементы, приведенные в таблице.


Силовой диод VD2 и тиристор VS1 в схеме включены последовательно с нагрузкой — паяльником. Напряжение одного полупериода прямо поступает на нагрузку. Второй полупериод регулируется с помощью тиристора, на электрод которого поступает управляющий сигнал.

На транзисторах VT1, VT2, конденсаторе С1, резисторах R1, R2 реализована схема пилообразного напряжения, которое подается на управляющий электрод тиристора. В зависимости от положения величины сопротивления регулировочного резистора R2 меняется время открытия тиристора для прохождения второго полупериода переменного напряжения.

В результате этого происходит изменение среднего напряжения за период, а, следовательно, и мощности.

Резистор R5 гасит лишнее напряжение, а стабилитрон VD1 предназначен для обеспечения питания схемы управления. Остальные компоненты предназначены для обеспечения режимов работы элементов конструкции. Для чтения характеристик таких устройств служит .

Конструкция устройства для сборки своими руками

Как следует из рассмотрения схемы, она состоит из силовой части, которую следует выполнять с помощью навесного монтажа, и схемы управления на печатной плате.

Создание печатной платы включает изготовление рисунка платы. Для этого в бытовых условиях обычно используется так называемая ЛУТ, что означает лазерно-утюжная технология. Метод изготовления печатной платы включает следующие этапы:

  • создание рисунка;
  • перенос рисунка на заготовку платы;
  • травление;
  • очистка;
  • сверление отверстий;
  • лужение проводников.

Для создания изображения платы чаще всего используется программа Sprint Layout. После получения с помощью лазерного принтера рисунка, он переносится на фольгированный гетинакс с помощью нагретого утюга. Затем производится травление лишней фольги с помощью хлорного железа и очистка рисунка. В нужных местах сверлятся отверстия, и делается лужение проводников. На плату размещаются элементы схемы управления и производится их распайка (существуют определенные рекомендации — ).

Сборка силовой части схемы включает подсоединение к тиристору резисторов R5, R6 и диода VD2.

Последний этап сборки – размещение силовой части и платы схемы управления в корпусе. Порядок размещения в корпусе зависит от его типа.

В случае монтажа открытой проводки, чтобы не отвлекаться на дополнительные приобретения в магазине, можно изготовить . Разница между такими устройствами лишь в функциональной составляющей — схеме включения освещения.

Более подробно об особенностях проходных выключателей можно прочитать в . Кроме того, все большую популярность в современных системах управления освещения набирают другие типы выключателей — например, .

Поскольку размеры элементов невелики и их немного, то в качестве корпуса можно использовать, например, пластмассовую розетку. Наибольшее место там занимает переменный резистор регулировки и мощный тиристор. Тем не менее, как показывает опыт, все элементы схемы вместе с печатной платой умещаются в такой корпус.

Проверка и регулировка схемы

Для проверки схемы на ее выход подключается паяльник и мультиметр. Вращая ручку регулятора, необходимо проверить плавность изменения выходного напряжения.

Дополнительным элементом регулятора может стать светодиод.

Включив светодиод на выход регулятора можно визуально определять увеличение и уменьшение выходного напряжения по яркости свечения. При этом последовательно с источником света необходимо установить ограничивающий резистор.

Выводы :

  1. В процессе работы с паяльником часто требуется регулировка его мощности.
  2. Существует многочисленные схемы регулировки мощности паяльника с резистором, транзистором, тиристором.
  3. Регулировочная схема мощности паяльника с тиристором проста, имеет малые габариты и может быть легко собрана своими руками.

Видео с советами по сборке регулятора температуры паяльника своими руками

Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://сайт/


Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.


Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.

Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.


Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.


На картинке видно, что куда поступает и откуда выходит.


В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.



Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.


При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.


Схемные решения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.

Регулятор мощности на симисторе КУ208Г.


VS1 – КУ208Г

HL1 – МН3… МН13 и т.д.



На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.

Назначение элементов.

HL1 – линеаризует управление и является индикатором.

С1 – генерирует пилообразный импульс и защищает схему управления от помех.

R1 – регулятор мощности.

R2 – ограничивает ток через анод - катод VS1 и R1.

R3 – ограничивает ток через HL1 и управляющий электрод VS1.

Регулятор мощности на мощном тиристоре КУ202Н.


VS1 – КУ202Н



Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.

На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.


Регулятор мощности на маломощном тиристоре.



Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.

Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%.


VD1... VD4 – 1N4007


Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.

Теперь схема работает аналогично симисторному регулятору.


Конструкция и детали.


Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».


Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.


Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.


Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.


Так выглядят регуляторы мощности, которые я использую много лет.


Get the Flash Player to see this player.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.


Дополнительный материал.

Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.



Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.

Тип прибора Катод Управ. Анод
BT169D(E, G) 1 2 3
CR02AM-8 3 1 2
MCR100-6(8) 1 2 3

Паяльник — это инструмент, без которого домашнему мастеру не обойтись, но устраивает прибор не всегда. Дело в том, что обычный паяльник, не имеющий терморегулятора и нагревающийся вследствие этого до определенной температуры, обладает рядом недостатков.

Схема устройства паяльника.

Если при непродолжительной работе без регулятора температуры вполне возможно обойтись, то у обычного паяльника, длительное время включенного в сеть, его недостатки проявляются в полной мере:

  • припой скатывается с чрезмерно нагретого жала, в результате чего пайка оказывается непрочной;
  • на жале образуется окалина, которую приходится часто зачищать;
  • рабочая поверхность покрывается кратерами, а их необходимо удалять напильником;
  • он неэкономичен — в промежутках между сеансами пайки, порой достаточно длительными, продолжает потреблять из сети номинальную мощность.

Терморегулятор для паяльника позволяет оптимизировать его работу:

Рисунок 1. Схема простейшего терморегулятора.

  • паяльник не перегревается;
  • появляется возможность подобрать значение температуры паяльника, оптимальное для конкретной работы;
  • во время перерывов достаточно с помощью регулятора температуры снизить нагрев жала, а затем в нужное время быстро восстановить требуемую степень нагрева.

Конечно, в качестве терморегулятора для паяльника на напряжение 220 В можно применить ЛАТР, а для паяльника на 42 В — блок питания КЭФ-8, но они имеются не у всех. Еще один выход из положения — применение в качестве регулятора температуры промышленного светорегулятора, но они не всегда имеются в продаже.

Регулятор температуры для паяльника своими руками

Вернуться к оглавлению

Простейший терморегулятор

Это устройство состоит всего из двух деталей (рис. 1):

  1. Кнопочный выключатель SA с размыкающими контактами и фиксацией состояния.
  2. Полупроводниковый диод VD, рассчитанный на прямой ток порядка 0,2 А и обратное напряжение не ниже 300 В.

Рисунок 2. Схема терморегулятора, работающего на конденсаторах.

Работает этот регулятор температуры следующим образом: в исходном состоянии контакты выключателя SA замкнуты и ток протекает через нагревательный элемент паяльника во время как положительных, так и отрицательных полупериодов (рис. 1а). При нажатии на кнопку SA его контакты размыкаются, но полупроводниковый диод VD пропускает ток лишь во время положительных полупериодов (рис. 1б). В результате мощность, потребляемая нагревателем, уменьшается вдвое.

В первом режиме паяльник быстро прогревается, во втором — его температура несколько снижается, перегрева не наступает. В результате можно паять в довольно комфортных условиях. Выключатель вместе с диодом включают в разрыв питающего провода.

Иногда выключатель SA монтируется на подставке и срабатывает, когда паяльник кладут на нее. В перерывах между пайкой контакты выключателя разомкнуты, мощность нагревателя снижена. Когда паяльник поднимают, потребляемая мощность возрастает и он быстро нагревается до рабочей температуры.

В качестве балластного сопротивления, с помощью которого можно уменьшить мощность, потребляемую нагревателем, можно использовать конденсаторы. Чем меньше их емкость, тем больше сопротивление протеканию переменного тока. Схема простого терморегулятора, работающего на этом принципе, приведена на рис. 2. Он рассчитан на подключение паяльника мощностью 40 Вт.

Когда разомкнуты все выключатели, тока в цепи нет. Комбинируя положение выключателей, можно получить три степени нагрева:

Рисунок 3. Схемы симисторных терморегуляторов.

  1. Наименьшая степень нагрева соответствует замыканию контактов выключателя SA1. При этом последовательно с нагревателем включается конденсатор С1. Его сопротивление довольно велико, поэтому падение напряжения на нагревателе порядка 150 В.
  2. Средняя степень нагрева соответствует замкнутым контактам выключателей SA1 и SA2. Конденсаторы С1 и С2 включаются параллельно, общая емкость увеличивается вдвое. Падение напряжения на нагревателе возрастает до 200 В.
  3. При замыкании выключателя SA3 независимо от состояния SA1 и SA2 на нагреватель подается полное напряжение сети.

Конденсаторы С1 и С2 неполярные, рассчитанные на напряжение не менее 400 В. Для достижения необходимой емкости можно несколько конденсаторов соединить параллельно. Через резисторы R1 и R2 конденсаторы разряжаются после отключения регулятора от сети.

Есть еще один вариант простого регулятора, который по надежности и качеству работы не уступает электронным. Для этого последовательно с нагревателем включается переменный проволочный резистор СП5-30 или какой-нибудь иной, имеющий подходящую мощность. Например, для 40-ваттного паяльника подойдет резистор, рассчитанный на мощность 25 Вт и имеющий сопротивление порядка 1 кОм.

Вернуться к оглавлению

Тиристорный и симисторный терморегулятор

Работа схемы, приведенной на рис. 3а, очень похожа работу разобранной ранее схемы на рис. 1. Полупроводниковый диод VD1 пропускает отрицательные полупериоды, а во время положительных полупериодов ток проходит через тиристор VS1. Доля положительного полупериода, в течение которого тиристор VS1 открыт, зависит в конечном счете от положения движка переменного резистора R1, регулирующего ток управляющего электрода и, следовательно, угол отпирания.

Рисунок 4. Схема симисторного терморегулятора.

В одном крайнем положении тиристор открыт в течение всего положительного полупериода, во втором — полностью закрыт. Соответственно, мощность, рассеиваемая на нагревателе, меняется от 100% до 50%. Если отключить диод VD1, то мощность будет меняться от 50% до 0.

На схеме, приведенной на рис. 3б, тиристор с регулируемым углом отпирания VS1 включен в диагональ диодного моста VD1-VD4. Вследствие этого регулировка напряжения, при котором отпирается тиристор, происходит как во время положительного, так и в течение отрицательного полупериода. Мощность, рассеиваемая на нагревателе, меняется при повороте движка переменного резистора R1 от 100% до 0. Можно обойтись и без диодного моста, если в качестве регулирующего элемента применить не тиристор, а симистор (рис. 4а).

При всей привлекательности терморегулятор с тиристором или симистором в качестве регулирующего элемента обладает следующими недостатками:

  • при скачкообразном нарастании тока в нагрузке возникают сильные импульсные помехи, проникающие затем в осветительную сеть и эфир;
  • искажение формы сетевого напряжения за счет внесения в сеть нелинейных искажений;
  • снижение коэффициента мощности (cos ϕ) за счет внесения реактивной составляющей.

Для сведения к минимуму импульсных помех и нелинейных искажений желательна установка сетевых фильтров. Самое простое решение — ферритовый фильтр, представляющий собой несколько витков провода, намотанных на ферритовое кольцо. Такие фильтры применяют в большинстве импульсных блоков питания электронных устройств.

Ферритовое кольцо можно взять из проводов, соединяющих системный блок компьютера с периферийными устройствами (например, с монитором). Обычно на них есть цилиндрическое утолщение, внутри которого находится ферритовый фильтр. Устройство фильтра показано на рис. 4б. Чем больше витков, тем выше качество фильтра. Размещать ферритовый фильтр следует как можно ближе к источнику помех — тиристору или симистору.

В устройствах с плавным изменением мощности следует откалибровать движок регулятора и отметить маркером его положения. При настройке и установке следует отключить устройство от сети.

Схемы всех приведенных устройств достаточно просты и их в состоянии повторить человек, обладающий минимальными навыками в сборке электронных устройств.


Поскольку процесс пайки связан с расплавлением припоя, необходимо всегда выдерживать оптимальную температуру нагрева. Учитываются следующие факторы:

  • Температура плавления припоя (от 150 до 320 градусов);
  • Термостойкость элементов, на которых производится пайка. Многие радиокомпоненты просто выходят из строя при продолжительном нагреве, а изоляция проводов теряет свои свойства;
  • Площадь рассеивания контактов. При соединении массивных элементов, необходимо иметь запас по температуре и мощности.

Если вы просто спаиваете провода, достаточно знать мощность паяльника и примерную температуру плавления припоя. Критерий простой – быстрый или медленный нагрев.

А вот при монтаже печатных плат или ремонте электроприборов – неверно выбранная температура паяльника может вылиться в приобретение дорогостоящих радиодеталей, которые будут повреждены высокой температурой.

Температура паяльника для пайки – как подобрать

  1. Если монтаж не связан со специфическими радиодеталями, чувствительными к перегреву – степень нагрева жала должна на 10 градусов превышать температуру плавления припоя. Причем не точку начала расплава – а именно температуру устойчивого нахождения в жидком состоянии;
  2. Если планируется соединять контакты с большой площадью и массой – повышается не величина нагрева, а мощность паяльника. Маломощный прибор с высокой температурой все равно не справится с рассеиванием. Компенсируют массу детали соответствующим размером рабочего жала. А для его разогрева требуется мощность, а не градусы;
  3. В паспорте радиокомпонентов обычно указывается максимально допустимое значение нагрева корпуса. Это относится и к температуре пайки. Опять же, сделайте выбор в пользу мощности, а не повышения градуса. Надо стараться, чтобы время контакта жала и детали было минимальным. Припой должен расплавиться, а корпус оставаться не перегретым.

Для различных условий работы выпускаются паяльники электрические с регулировкой температуры.

Не имеет значения конструктивное исполнение, регулятор может быть встроенным в корпус или выполнен в виде отдельного блока. Главное – вы знаете, насколько горячее жало у инструмента.

Типичной проблемой при работе с паяльником является обгорание жала. Связано это с его большим нагревом. Во время работы паяльные операции требуют неодинаковой мощности, поэтому приходится использовать паяльники с разной мощностью. Для защиты устройства от перегрева и скорости изменения мощности лучше всего применять паяльник с регулировкой температуры. Это позволит за считаные секунды изменить параметры работы и продлить срок эксплуатации устройства.

История происхождения

Паяльник - это инструмент, предназначенный для передачи тепла материалу при соприкосновении с ним. Прямое его назначение - создание неразъемного соединения посредством расплавления припоя.

До начала XX века существовали два типа паяльных приспособлений: газовый и медный. В 1921 году изобретатель из Германии Эрнст Сакс изобрёл и зарегистрировал патент на паяльник, нагрев которого происходил под действием электрического тока. В 1941 году Карл Уэллер запатентовал инструмент трансформаторного вида, напоминающего формой пистолет. Пропуская через свой наконечник ток, он быстро нагревался.

Через двадцать лет этот же изобретатель предложил использовать термоэлемент в паяльнике для контроля температуры нагрева. В конструкцию входили спрессованные друг с другом две металлические пластинки с разным тепловым расширением. С середины 60-х годов из-за развития полупроводниковых технологий паяльный инструмент стал выпускаться импульсного и индукционного типа работы.

Виды паяльников

Основное различие паяльных устройств заключается в их максимальной мощности, от которой зависит и температура нагрева. Кроме этого, электрические паяльники разделяются по значению питающего их напряжения. Они выпускаются как для сети переменного напряжения 220 вольт, так и постоянного его значения разной величины. Разделение паяльников происходит также по виду и принципу действия.

По принципу работы бывают:

  • нихромовые;
  • керамические;
  • импульсные;
  • индукционные;
  • термовоздушные;
  • инфракрасные;
  • газовые;
  • открытого типа.

По виду они бывают стержневые и молотковые. Первые предназначены для точечного нагрева, а вторые для прогрева определённой площади.

Принцип работы

Большинство приборов в основе работы используют преобразование электрической энергии в тепловую. Для этого во внутренней части устройства располагается нагревательный элемент. Но некоторые типы устройства просто нагреваются на огне или используют подожжённый направленный поток газа.

В нихромовых устройствах используется проволочная спираль, через которую пропускается ток. Спираль располагается на диэлектрике. Нагреваясь, спираль передаёт тепло медному жалу. Температура нагрева регулируется термодатчиком, который при достижении определённого значения нагрева отсоединяет спираль от электрической линии, а при остывании опять подключает её к ней. Термодатчиком является не что иное, как термопара.

В керамических паяльниках в качестве нагревателей используются стержни. Регулировка в них чаще всего осуществляется методом понижения величины напряжения подающегося на керамические стержни.

Индукционное оборудование работает за счёт индуктора. Жало покрывается ферромагнетиком. С помощью катушки наводится магнитное поле и появляются в проводнике токи, приводящие к нагреву жала. При работе наступает такой момент, что жало теряет свои магнитные свойства, нагрев останавливается, а при остывании свойства возвращаются и нагрев восстанавливается.

Работа импульсных паяльников основана на использовании высокочастотного трансформатора. Вторичная обмотка трансформатора имеет несколько витков, выполненных из толстого провода, концы которого и являются нагревателями. Частотный преобразователь увеличивает частоту входного сигнала, который снижается на трансформаторе. Регулировка нагрева происходит при помощи регулировки мощности.

Термовоздушный паяльник, или, как его называют, термофен, при работе использует горячий воздух, который нагревается при прохождении через спираль, выполненную из нихрома. Температуру в нём можно регулировать как снижением величины напряжения подаваемого на проволоку, так и изменением потока воздуха.

Одним из видов паяльников стали устройства, использующие инфракрасное излучение. В основе их работы лежит процесс нагрева излучением с длиной волны до 10 мкм. Для регулирования применяется сложный узел управления, изменяющий как длину волны, так и её интенсивность.

Газовые представляют собой обычные горелки, вместо жала использующие сопла разного диаметра. Управление температурой практически невозможно, кроме изменения интенсивности выхода газа с помощью заслонки.

Понимая принцип работы паяльника, можно не только осуществить его ремонт своими руками, но и доработать его конструкцию, например, сделать его регулируемым.

Устройства для регулировки

Цена паяльников с регулировкой температуры превышает цену обыкновенных устройств в несколько раз. Поэтому в некоторых случаях есть смысл купить хороший обыкновенный паяльник, а регулятор выполнить самому. Таким образом, управление паяльным оборудованием выполняется двумя способами контроля:

  • мощностью;
  • температурой.

Контроль температуры позволяет достичь более точных показателей, но реализовать проще управление мощностью. При этом регулятор можно выполнить независимым и подключать к нему различные приборы.

Универсальный стабилизатор

Паяльник с терморегулятором можно изготовить, используя заводского исполнения диммер или сконструировать по его аналогии самостоятельно. Диммер — это регулятор, с помощью которого изменяется мощность, подводимая к паяльнику. В сети 220 вольт протекает ток переменной величины с синусоидальной формой. Если этот сигнал обрезать, то на паяльник будет подаваться уже искажённая синусоида, а значит, изменится и величина мощности. Для этого перед нагрузкой в разрыв включается устройство, которое пропускает ток только в момент достижения сигналом определённой величины.

Диммеры различают по принципу действия. Они могут быть:

  • аналоговыми;
  • импульсными;
  • комбинированными.

Схема диммера реализуется с использованием различных радиокомпонентов : тиристоров, симисторов, специализированных микросхем. Самая несложная модель диммера выпускается с механической ручкой регулятора. Принцип действия модели основан на изменении сопротивления в цепи. По сути, это тот же самый реостат. Диммеры на симисторах обрезают передний фронт входного напряжения. Контроллеры используют в своей работе сложную электронную схему понижения напряжения.

Самостоятельно выполнить диммер проще, используя для этого тиристор. Для схемы не понадобятся дефицитные детали , и собирается она простым навесным монтажом.

Работа устройства основана на способности открывания тиристора в моменты времени при подаче сигнала на его управляющий вывод. Входной ток, поступая на конденсатор через цепочку резисторов, заряжает его. При этом динистор открывается и пропускает через себя кратковременно ток, поступающий на управление тиристора. Конденсатор разряжается и тиристор закрывается. При следующем цикле всё повторяется. Изменяя сопротивление цепи, регулируется длительность заряда конденсатора, а значит и время открытого состояния тиристора. Таким образом, устанавливается время, в течение которого паяльник подключается к сети 220 вольт.

Простой терморегулятор

Используя в качестве основы стабилитрон TL431, можно собрать простой терморегулятор своими руками. Такая схема состоит из недорогих радиокомпонентов и практически не нуждается в настройке.

Стабилитрон VD2 TL431 включён по схеме компаратора с одним входом. Величина требуемого напряжения определяется делителем, собранным на резисторах R1-R3. В качестве R3 используется термистор, свойство которого заключается в уменьшении сопротивления при нагреве. С помощью R1 устанавливается значение температуры, при котором устройство отключает паяльник от питания.

При достижении на стабилитроне значения сигнала, превышающего 2,5 вольта, он пробивается, и через него поступает питание на коммутационное реле K1. Реле подаёт сигнал на управляющий вывод симистора и паяльник включается. При нагреве сопротивление термодатчика R3 уменьшается. Напряжение на TL431 опускается ниже сравниваемого и цепь питания симистора разрывается.

Для паяльного инструмента мощностью до 200 Вт симистор можно использовать без радиатора. В качестве реле подойдёт РЭС55А с рабочим напряжением 12 вольт.

Повышение мощности

Случается так, что возникает потребность не только уменьшить мощность паяльного оборудования, но и наоборот, увеличить. Смысл идеи заключается в том, что можно использовать напряжение, возникающее на сетевом конденсаторе, значение которого составляет 310 вольт. Обусловлено это тем, что сетевое напряжение имеет амплитудное значение больше чем его эффективное в 1,41 раза. Из этого напряжения формируются импульсы прямоугольной амплитуды.

Меняя коэффициент заполнения, можно управлять эффективным значением импульсного сигнала от нуля до 1,41 от эффективного значения входного напряжения. Таким образом, мощность нагрева паяльника будет изменяться от нуля до удвоенной номинальной мощности.

Входная часть представляет собой стандартно собранный выпрямитель. Выходной блок выполнен на полевом транзисторе VT1 IRF840 и способен коммутировать паяльник с мощностью 65 Вт. Управление работой транзистора происходит микросхемой с широтно-импульсной модуляцией DD1. Конденсатор С2 стоит в корректирующей цепочке и задаёт частоту генерации. Питание микросхемы осуществляется на радиодеталях R5, VD4, C3. Диод VD5 используется для защиты транзистора.

Паяльная станция

Паяльная станция, это в принципе, тот же самый регулируемый паяльник. Её отличие от него в наличии удобной индикации и дополнительных приспособлениях, помогающих облегчить процесс пайки. Обычно к такому оборудованию подключается электрический паяльник и фен. Если есть опыт радиолюбителя, можно попробовать собрать схему паяльной станции своими руками. В её основе лежит микроконтроллер (МК) ATMEGA328.

Программируется такой МК на программаторе, для этого подойдёт Adruino или самодельное устройство. К микроконтроллеру подключается индикатор, в качестве которого используется жидкокристаллический дисплей LCD1602. Управление станцией простое, для этого используется переменное сопротивление на 10 кОм. Поворотом первого выставляется температура паяльника, второго - фена, а третьим можно уменьшить или увеличить поток воздуха фена.

Полевой транзистор, работающий в ключевом режиме, вместе с симистором устанавливается на радиатор через диэлектрическую прокладку. Светодиоды используются с малым потреблением тока, не более 20 мА. Паяльник и фен, подключаемые к станции, должны иметь встроенную термопару, сигнал с которой обрабатывается МК. Рекомендуемая мощность паяльника 40 Вт, а фена - не более 600 Вт.

Источник питания потребуется на 24 вольта с током не меньше двух ампер. Для питания можно задействовать готовый адаптер от моноблока или ноутбука. Кроме стабилизированного напряжения он содержит различного вида защиту. А можно выполнить и самостоятельно аналоговый типа. Для этого потребуется трансформатор со вторичной обмоткой, рассчитанной на 18–20 вольт, и выпрямительный мост с конденсатором.

После сборки схемы проводится её наладка. Все операции заключаются в подстройке температуры. В первую очередь выставляется температура на паяльнике. Например, на индикаторе выставляем 300 градусов. Затем, прижав термометр к жалу, с помощью регулируемого резистора, устанавливается температура, соответствующая реальным показаниям. Таким же образом калибруется и температура фена.

Все радиоэлементы удобно приобрести в китайских интернет-магазинах. Такое устройство без учёта самодельного корпуса обойдётся порядка ста долларов США со всеми принадлежностями. Прошивку для устройства можно скачать тут: http://x-shoker.ru/lay/pajalnaja_stancija.rar.

Конечно, собрать начинающему радиолюбителю цифровой регулятор температуры своими руками будет сложно. Поэтому можно приобрести готовые модули стабилизации температуры. Они представляют собой платы с распаянными разъёмами и радиодеталями. Понадобится только купить корпус или изготовить его самостоятельно.

Таким образом, используя стабилизатор нагрева паяльника, легко добиться его универсальности. При этом диапазон изменения температуры достигается в пределах от 0 до 140 процентов.

Вам также будет интересно:

Читы и консольные команды для Counter-Strike: Global Offensive Команда в кс го чтобы летать
В этой статье мы рассмотрим некоторые из наиболее полезных и забавных консольных команд в...
Arduino и четырехразрядный семисегментный индикатор Семисегментный индикатор 4 разряда распиновка
В сегодняшней статье поговорим о 7-сегментных индикаторах и о том, как их «подружить» с...
«Рабочие лошадки» Hi-Fi: собираем бюджетную систему Хороший бюджетный hi fi плеер
Выбор плеера - это сложный процесс, иногда человек желает получить не просто коробочку,...
Как правильно пользоваться сургучными печатями
На самом деле, сургуч - это смесь смол, окрашенная в определенный цвет. Если у вас на руках...
Лагает fallout 4 как снизить графику
10 ноября состоялся релиз долгожданной игры на ПК, PlayStation 4 и Xbox One, и постепенно...