Компьютерные подсказки

Вылетает Сталкер: Зов Припяти Программа икс рей 1

Stalker lost alpha гид по прохождению

Pony Express отслеживание почтовых отправлений

Pony Express – время и сроки доставки с Алиэкспресс в Россию

Застряли посылки с Алиэкспресс со статусом Hand over to airline: что делать?

РФ (Nigma) — интеллектуальная поисковая система

Данные для семантики — Яндекс Вордстат

Пиар ВКонтакте при помощи бирж: особенности и использование

Почему я не могу отправить сообщение?

Предупреждение «Подключение не защищено» в Google Chrome по протоколу https Нарушена конфиденциальность данных яндекс браузер

Всё что известно о смартфоне Samsung Galaxy S9 Аккумуляторная батарея Galaxy S9 и мощность

Темы оформления и русификация форума SMF, а так же установка компонента JFusion в Joomla

Автоматическое определение движка форума Позже board powered by smf

Коды в игре скайрим - зелья, ингредиенты, заклинания Код на ингредиенты скайрим

Подробная инструкция, как в "скайриме" открыть дверь золотым когтем

Электронный предохранитель на тиристоре схема. Электронный предохранитель на полевом транзисторе

Бытовая автоматика

Это устройство (рис. 7.21) выполняет роль электронного предохранителя- оно отключает нагрузку, если протекающий через нее ток превысит допустимый. Ток, протекающий через нагрузку, подключенную к разъему XI, создает на резисторе R3 падение напряжения. Часть этого напряжения, снимаемого с движка переменного резистора R2, подается в цепь базы транзистора V3. В коллекторной цепи этого транзистора включено электромагнитное реле К1. Если ток нагрузки превысит заданную величину, то реле К1 сработает и своими контактами Kl.l, К1.2 отключит нагрузку от сети и за-блокируется. В таком состоянии прибор остается до тех пор, пока не будет нажата кнопка S1 «Сброс».

Схема устройства

Резистор R1, диод V2, стабилитрон VI и конденсатор С1 образуют стабилизированный источник питания. Диод V4 предохраняет эмиттерный переход транзистора V3 от воздействия на него напряжения обратной полярности. Ток ограничения устанавливают переменным резистором R2. Минимальный ток ограничения определяется сопротивлением резистора R3.

При указанном на схеме номинале он составляет 0,2...0,3 А. Для защиты сети от коротких замыканий в нагрузке используется плавкий предохранитель F1. Контакты Kl.l, К1.2 реле соединены параллельно для увеличения возможного максимального тока нагрузки. Транзистор V3 может быть из серий МП25, МП26 с любым буквенным индексом, диод V4 - серий Д7, Д9, Д311. Стабилитрон Д816Г можно заменить тремя последовательно включенными стабилитронами Д814Д. Реле К1 - РЭС9 (паспорт РС4.524.205). Кнопка S1 -МТ1-1 или П2К. Максимальный ограничиваемый устройством ток нагрузки не должен превышать 1,5 А - иначе могут подгореть контакты реле К1.

Это устройство предназначено для защиты цепей постоянного тока от перегрузки по току и замыканий цепи нагрузки. Его включают между источником питания и нагрузкой.

Предохранитель выполнен в виде двухполюсника и может работать совместно с блоком питания с регулируемым выходным напряжением в пределах 3...35 В. Максимальное полное падение напряжения на предохранителе не превышает 1,9 В при максимальном токе нагрузки. Ток срабатывания защитного устройства можно плавно регулировать в пределах от 0,1 до 1,5 А независимо от напряжения на нагрузке. Электронный предохранитель обладает хорошими термостабильностью и быстродействием (3... 5 мкс), надежен в работе.

Принципиальная электрическая схема электронного предохранителя показана на рис.1. В рабочем режиме тринистор VS1 закрыт, а электронный ключ на транзисторах VT1, VT2 открыт током, протекающим через резистор R1 в базу транзистора VT1. При этом ток нагрузки протекает через электронный ключ, набор резисторов R3- R6, переменный резистор R8 и контакты кнопки SB1.

При перегрузке падение напряжения на цепи резисторов R3-R6, R8 достигает значения, достаточного для открывания тринистора VS1 по цепи управляющего электрода. Открывшийся тринистор замыкает цепь базы транзистора VT1, что приводит к закрыванию электронного ключа. Ток в цепи нагрузки резко уменьшается; остается незначительный остаточный ток, равный Iост=Uпит/R1. При Uпит=9 В Iост=12 мА, а при 35 В - 47 мА.

Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно на короткое время нажать на кнопку SB1 и отпустить. При этом тринистор закроется, а транзисторы VT1 и VT2 вновь откроются.
Остаточный ток можно уменьшить, увеличив в 1,5...2,5 раза сопротивление резистора R1 и использовав транзисторы VT1 и VT2 с большим статическим коэффициентом передачи тока. Однако чрезмерное увеличение сопротивления резистора R1 ведет к увеличению падения напряжения на транзисторе VT2, т. е. увеличению падения напряжения на предохранителе в рабочем режиме.

Остаточный ток можно существенно уменьшить (до 2...4 мА) при любом напряжении питания, использовав для смещения транзистора VT1 источник тока на полевом транзисторе КП303А или КП303Б с начальным током стока 1…2,5 мА. При этом резистор R1 исключается. Затвор и исток полевого транзистора нужно соединить вместе и подключить к базе транзистора VT1, а сток - к его коллектору. Следует иметь в виду, что в этом случае устройство работоспособно в цепях с напряжением не более 25 В.

На рис.2 показана зависимость тока срабатывания предохранителя от сопротивления резистора R8. Вид этой характеристики сильно зависит от напряжения открывания тринистора.
Следует иметь в виду, что при напряжении питания, имеющем значительные пульсации, электронный предохранитель срабатывает на пиках напряжения, поэтому средний ток через нагрузку будет несколько ниже, чем при использовании хорошо сглаженного напряжения.

Ток срабатывания предохранителя можно определить из выражения: I сраб =U открVS1 /(R экв +R8), где U открVS1 - напряжение открывания тринистора, а R экв - эквивалентное сопротивление цепи резисторов R3- R6. Как показывает график на рис.2, регулирование тока срабатывания резистором R8 в зоне предельных значений довольно грубое, поэтому целесообразно либо сократить пределы регулирования уменьшением сопротивления резистора R8 в 1,5...2 раза, либо ввести многоступенчатое регулирование переключателем с набором точно подобранных резисторов.

Предохранитель смонтирован на печатной плате из стеклотекстолита толщиной 1,5 мм (рис.3). На плате размещены все детали, кроме транзистора VT2, резистора R8 и кнопки SB1. Транзистор VT2 необходимо установить на небольшой теплоотвод, например, на дюралюминиевую пластину размерами 90х35х2 мм с отогнутыми краями.

В устройстве можно применить транзисторы и в металлическом корпусе, потребуется лишь изменить конструкцию и размеры теплоотвода. Транзистор КТ817Б можно заменить на КТ815Б-КТ815Г, КТ817В, КТ817Г, КТ801А, КТ801Б, а КТ805АМ - на КТ802А, КТ805А, КТ805Б, КТ808А, КТ819Б-КТ819Г. Статический коэффициент передачи тока транзисторов должен быть не менее 45. Постоянные резисторы - МЛТ, МТ и МОН; переменный резистор - любой проволочный; кнопка SB1 - П2К без фиксатора.

В предохранителе лучше использовать тринисторы КУ103А с напряжением открывания 0,4...0,6 В.
Собранный предохранитель налаживания, как правило, не требует. В некоторых случаях требуется подобрать сопротивление Rэкв добавлением еще одного резистора для установки максимального тока срабатывания. На плате предусмотрено место для четырех резисторов R3-R6.


Рис. 2


Рис. 3

Радио №5, 1988 г., стр.31

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ817Б

1 В блокнот
VT2 Биполярный транзистор

КТ805АМ

1 В блокнот
VS1 Тиристор & Симистор

КУ103А.Б

1 В блокнот
R1 Резистор

750 Ом

1 2 Вт В блокнот
R2 Резистор

2.4 кОм

1 В блокнот
R3-R6 Резистор

(автор Tonich от 6.08.2013г.) не имеет защиты от перегрузки и тока к.з. В недрах Интернета нашлась простая схема защиты - электронный предохранитель. Это устройство подключается между нагрузкой и источником питания.
Вот электрическая схема ЭП.

Контактами Х1 и Х2 устройство подсоединяется к источнику питания. Нагрузка подключается к контактам Х3, Х4. Устройство представляет собой электронный ключ, выполненный на транзисторах VT1 … VT3. Электронный ключ управляется датчиком тока собранном на резисторах R1, R2 и потенциометре R4.

При превышении тока нагрузки, установленного потенциометром R4, падение напряжения на эмиттерном переходе транзистора VT3 приводит к его открыванию и, как следствие, шунтированию эмиттерного перехода VT1. Напряжение на базе VT1 относительно его эмиттера оказывается настолько мало, что VT1 запирается и ток через него не течёт. Вследствие этого цепь VT1-R5 оказывается разорванной, и напряжение на базе VT2 становится ниже порога его срабатывания, транзистор VT2 оказывается закрытым, а нагрузка обесточена. После устранения к.з. (или перегрузки) процессы, начиная с VT3 , происходят в обратном порядке.
Порог срабатывания ключа на транзисторе VT3 устанавливается потенциометром R4. Тем самым определяется максимально допустимый ток, при котором сработает ЭП.
Мощный резистор R3 служит для ограничения тока через VT2. Конденсатор С1 подавляет импульсные помехи (микроискрения), возникающие при скольжении ползунка по резистивному слою потенциометра.

Технические характеристики:
Рабочее напряжение - 5…30В.
Диапазон регулировки тока срабатывания - 0,1…3, 5А.

Компоненты:
R3 - 0,5 Ом, мощный 10 Вт, остальные резисторы мощностью 0,25 Вт.
R1 - 470 Ом.
R2, R6 - 1 кОм.
R5-110 Ом.
R4 - резистор подстроечный - 4,7 кОм.
VT1-VT3 транзисторы BC 547B (KT 3102A)
VT2- транзистор КТ 805АМ, КТ 808АМ, КТ 819ГМ, 2N3055 установить на радиатор площадью не менее 100 кв.см с использованием термопасты.

После сборки подключил ЭП к источнику питания. В качестве нагрузки использовал мощный проволочный резистор сопротивлением 3 Ом. Ползунок потенциометра R4 установил на минимальное сопротивление, подал с нуля напряжение на ЭП. На вольтметре, подключённому к источнику питания - 30 В, на нагрузке ток и напряжение по нулям. Установил ползунок R4 на максимальное сопротивление. При токе 3,8А ЭП сработал. Так как хотелось увеличить ток срабатывания, решил уменьшить сопротивление резистора R3 до 0,3 Ом. Ток срабатывания удалось довести до 6 А. Больше не пытался устанавливать, т.к. транзистор КТ805АМ рассчитан на ток 5А. После срабатывания ЭП повторное включение возможно секунд через 15.
Электронный предохранитель можно выполнить и на мощном полевом транзисторе, но об этом в следующей статье.
Печатная плата в программе Layout 6.0

Схемы источников питания

Во время налаживания или ремонта радиоэлектронной аппаратуры, питающейся непосредственно от электросети, из-за различного рода ошибок может возникнуть короткое замыкание. Для предотвращения повреждения аппаратуры этим явлением следует использовать электронный предохранитель. На рисунке ниже представлена принципиальная схема электронного предохранителя с высоким быстродействием, который рассчитан на ток потребления до 10 А.

При наличии тока в цепи более-10 А устройство автоматически срабатывает и нагрузка, подключенная к разъему Х2, обесточивается. При подключении электронного предохранителя к сети 220 В на его узел управления подается питающее напряжение - 12 В. Ток течет через резистор R6 и светоизлучатель оптрона U1, так как транзистор VT1 и тринистор VS2 закрыты.

В этот момент открывается фотодинистор оптрона и ток начинает течь через него и резистор R3. Напряжение, выпрямленное мостом VD1...VD4, подается на управляющий электрод тринистора VS1. После открытия тринистор VS1 замыкает диагональ моста и открывает путь сетевому напряжению к нагрузке. В момент превышения тока нагрузки или коротком замыкании в ее цепях падение напряжения на резисторе R10 приводит к открытию транзистора VT1 и тринистора VS2. Тринистор своим малым сопротивлением шунтирует цепь питания светоизлучающего оптрона, что приводит к закрытию фотодинистора оптрона и тринистора VS2. В результате происходит обесточивание нагрузки, о чем свидетельствует загорание светодиода HL1. Для включения электронного предохранителя служит кнопка SB1. В момент нажатия кнопки SB1, когда ее контакты замыкаются тринистор VS2 закрывается, но электронный предохранитель еще остается невключенным, так как цепь питания светоизлучающего оптрона зашунтирована. И лишь при отпускании кнопки, когда ее контакты размыкаются, сетевое напряжение подается на нагрузку. Такое построение схемы позволяет не допустить выхода из строя устройства, а также в случае попытки его включения при коротком замыкании.

Для необходимости ручного отключения нагрузки в электронном предохранителе имеется кнопка SB2. В устройстве могут быть использованы следующие радиодетали. Резистор R10 представляет отрезок провода ПЭВ-1 00,6 мм длиной 2 м, который намотан ha корпус мощного резистора. Все остальные резисторы типа MJIT, рассчитанные на мощность, указанную на схеме. Конденсатор С1 типа К73-17, а С2 и СЗ - К50-6. Диоды VD1...VD4, кроме указанных на схеме, могут быть серий Д232, Д233, Д247, КД203, КД206 и другие на U06p.max не менее 400 В. Вместо диодов КД209Б (VD5,VD6, VD8) подойдут диоды серии КД102, а стабилитрона Д814Д (VD7) можно применить- Д814Г, Д813, Д811, КС213 и другие с напряжением стабилизации 10...12 В. Тринистор КУ101 (VS2) использовать с любым буквенным индексом, КУ202 (VS1) - с индексами К...Н. Транзистор VT1 из серии КТ361, КТ209, КТ201, КТ502, КТ501, КТ3107 и подобные. Кнопки SB1 и SB2 типа П2К без фиксации. Тринисторы VS1 и диоды VD1...VD4 следует установить на плоских алюминиевых радиаторах размерами 50x80x5 мм. Основная часть деталей устройства монтируется на печатной плате размером 72x52 мм, вырезанной из одностороннего фольгиро-ванного стеклотекстолита. Плата размещается в корпусе, в котором на лицевой его стороне установлены кнопки SB1 и SB2, светодиод HL1 и розетка XI. Собранный правильно из исправных деталей электронный предохранитель в налаживании не нуждается. Для установки требуемого порога срабатывания устройства необходимо подобрать тринистор VS1 и резистор R10 исходя из того, что Ікз < Icp.max При этом сопротивление резистора R10 определяют из формулы.


Было бы преступлением не упомянуть здесь плавкие предохранители. Как и другие типы предохранительных устройств они призваны защищать участок цепи от губительных перепадов питающего тока.

Плавкие предохранители

Отличительная особенность таких предохранителей - их очевидная простота. Устройство представляет собой не что иное, как участок проволоки небольшого диаметра. Последняя легко плавится при превышении силы тока сверх заданного порога.

Конечно, у такого метода защиты есть очевидный недостаток – время реакции (плавление проволоки не происходит мгновенно). То есть от кратковременных, но от этого не менее губительных, импульсов тока он не спасет. Зато он очень эффективен при коротких замыканиях в сети или при превышении допустимой нагрузки.

Принцип работы основывается на тепловой работе, которую совершает ток при прохождении через проводники (и напряжение здесь не имеет особого значения).

Сила тока = Максимально допустимая мощность цепи / Напряжение

То есть максимальная сила тока, которую должен выдерживать плавкий предохранитель в цепи питания 220 В при максимальной нагрузке в 3 кВт – около 15 А.

Ввиду того, что плавкость зависит от множества факторов (диаметр проволоки, теплоотводящая способность окружающей среды, материал, из которого изготовлена проволока, и т.п.), то чаще всего сгоревший элемент меняют согласно готовым расчетам из таблицы ниже (для наиболее популярных металлов).

Таблица 1

Предохранители на реле

Как и было сказано выше, плавкие предохранители имеют серьезный недостаток – время реакции. Кроме того, сгоревший элемент необходимо полностью менять (требуется замена проволоки или всего предохранителя).

В качестве альтернативы можно рассмотреть реле.

Один из примеров реализации такой схемы ниже.

Рис. 1. Схема реле

При коротком замыкании в питаемой цепи резко возрастает ток, вследствие чего составной транзистор (VT1 VT2) запирается и всё напряжение прикладывается к первому реле, которое, в результате срабатывания, размыкает второе реле и ток остается только на закрытом составном транзисторе.

Обозначенный блок рассчитан только на цепи, ток питания которых не превышает 1,6А, что может быть неудобно для разных задач.

Её можно немного переделать так.

Рис. 2. Переделанная схема реле

Номинал R4 не прописан специально, так как он требует расчета в зависимости от параметров питаемой цепи.

В качестве основы можно использовать готовые показатели в таблице ниже.

Таблица 2

Обе приведенные схемы рассчитаны на работу только в цепях питания 12 В.

Электронные предохранители без реле

Если ваша схема питается током до 5 А и напряжением до 25 В, то вам определенно понравится схема ниже. Порог срабатывания может быть настроен подстроечным резистором, а время реакции можно задать с помощью конденсатора.

Рис. 3. Схема предохранителя без реле

Ввиду того, что под постоянной нагрузкой транзистор может греться, его лучше всего разместить на теплоотводе.

В качестве альтернативной реализации, но с тем же принципом.

Рис. 4. Схема предохранителя без реле

Еще более простой электронный предохранитель с минимумом деталей на схеме ниже.

Рис. 5. Схема электронного предохранителя с минимумом деталей

При возникновении короткого замыкания транзистор блокируется на непродолжительное время. Если блокировка будет снята, а короткое замыкание останется, то "предохранитель" снова сработает и так до тех пор, пока в питаемой цепи не будет устранена проблема. То есть такой предохранитель не требует включения или выключения. Единственный его недостаток – постоянное включение прямой нагрузки в цепи в виде резистора R3.

Электронный предохранитель для 220 В

Схемы электронных предохранителей, приведенные выше, могут работать только в цепях с постоянным питанием. Но что, если вам нужен быстродействующий предохранитель для защиты питания в цепях с переменным током 220 В?

Можно использовать схему блока защиты от перегрузок ниже.

Рис. 6. Схема блока защиты от перегрузок

Максимальный ток срабатывания этой схемы, выполненной на стабилизаторе 7906 – 2А.

T1 – транзистор TIC225M, а

T2 - BTA12-600CW (замена не допустима).

В качестве более простых альтернатив для цепей с переменным током могут выступать следующие.

Вам также будет интересно:

Читы и консольные команды для Counter-Strike: Global Offensive Команда в кс го чтобы летать
В этой статье мы рассмотрим некоторые из наиболее полезных и забавных консольных команд в...
Arduino и четырехразрядный семисегментный индикатор Семисегментный индикатор 4 разряда распиновка
В сегодняшней статье поговорим о 7-сегментных индикаторах и о том, как их «подружить» с...
«Рабочие лошадки» Hi-Fi: собираем бюджетную систему Хороший бюджетный hi fi плеер
Выбор плеера - это сложный процесс, иногда человек желает получить не просто коробочку,...
Как правильно пользоваться сургучными печатями
На самом деле, сургуч - это смесь смол, окрашенная в определенный цвет. Если у вас на руках...
Лагает fallout 4 как снизить графику
10 ноября состоялся релиз долгожданной игры на ПК, PlayStation 4 и Xbox One, и постепенно...