Компьютерные подсказки

Вылетает Сталкер: Зов Припяти Программа икс рей 1

Stalker lost alpha гид по прохождению

Pony Express отслеживание почтовых отправлений

Pony Express – время и сроки доставки с Алиэкспресс в Россию

Застряли посылки с Алиэкспресс со статусом Hand over to airline: что делать?

РФ (Nigma) — интеллектуальная поисковая система

Данные для семантики — Яндекс Вордстат

Пиар ВКонтакте при помощи бирж: особенности и использование

Почему я не могу отправить сообщение?

Предупреждение «Подключение не защищено» в Google Chrome по протоколу https Нарушена конфиденциальность данных яндекс браузер

Всё что известно о смартфоне Samsung Galaxy S9 Аккумуляторная батарея Galaxy S9 и мощность

Темы оформления и русификация форума SMF, а так же установка компонента JFusion в Joomla

Автоматическое определение движка форума Позже board powered by smf

Коды в игре скайрим - зелья, ингредиенты, заклинания Код на ингредиенты скайрим

Подробная инструкция, как в "скайриме" открыть дверь золотым когтем

Мощные линейные и шим усилители. Широтно-импульсная модуляция (ШИМ)

Hugo Letourneau, Future Electronics

Истинные аудиофилы всегда мечтали сконструировать идеальный усилитель, абсолютно достоверно воспроизводящий каждый звук, записанный на студии. Возможно, они начали мечтать об этом, когда, получив первые уроки электроники, узнали, что топология класса A дает великолепные результаты с точки зрения линейности. Иногда горячие студенты, невзирая на предупреждения своих учителей, пытались изобрести велосипед, посвятив себя созданию усилителя класса A с выходной мощностью 150 Вт на канал, чтобы поразить всех друзей мощным и совершенным звуком. И каждый раз, когда разработка подходила к финальной стадии, выяснялось, что усилитель, по большому счету, представляет собой мощный обогреватель, а его корпус является раскаленным радиатором для транзисторов выходного каскада.

Затем эти студенты начинали увлекаться вопросами снижения энергопотребления, и делали усилители класса B или AB, а наиболее усердные, исследовав все топологии, останавливались на классе D. Для новичков в конструировании усилителей сообщим. В усилителе класса A выходной транзистор усиливает весь сигнал, т.е., 360°. В системах класса B каждый транзистор усиливает только одну полуволну сигнала, или 180°.

Усилители класса AB занимают промежуточное положение с диапазоном, примерно, от 180° до 270°, в зависимости от тока покоя выходного каскада. Усилители класса D часто называют «цифровыми» усилителями, так как выходные транзисторы работают в ключевом режиме, генерируя прямоугольные импульсы, а выходной сигнал на громкоговорители подается через фильтры. Основное преимущество топологии класса D - обусловленный ее цифровым характером высокий КПД, который может превышать 90%. Типовые схемы для каждой топологии выходного каскада показаны на Рисунке 1.

Усилители класса D известны более 25 лет, но настоящую популярность приобрели лишь 10-15 лет назад, или около того. Из за их высокого КПД, они использовались, главным образом, на низких частотах при больших уровнях мощности, т.е., для управления сабвуферами, и очень редко - в средне- и высокочастотных приложениях, вследствие значительных искажений, связанных с несовершенством технологии переключающих схем того времени.

Чтобы сделать усилитель класса D с приличным звучанием, необходимо учесть множество параметров, не пропустив ни одного элемента в цепи прохождения сигнала. Без этого не удастся добиться хороших звуковых характеристик во всем диапазоне частот. На Рисунке 2 изображена простая блок-схема типичного цифрового усилителя. Каждый прямоугольник этой блок-схемы должен быть тщательно выверен и согласован с остальными. Лишь в этом случае можно достичь определенного баланса и создать усилитель, отвечающий требованиям нашего уха.

Каскад ШИМ-модулятора

ШИМ сигнал можно получить с помощью как аналоговой, так и цифровой схемы, точно так же, как аналоговым или цифровым может быть источник звука. Проще всего получить сигнал ШИМ сравнением треугольного напряжения со звуковым сигналом, как это показано на Рисунке 3. Если источник сигнала цифровой, превратить импульсно-кодовую модуляцию в ШИМ можно, используя цифровой сигнальный процессор. В любом случае, первостепенное значение для формирования ШИМ сигнала имеют величина джиттера и стабильность всех генераторов, так как несколько пикосекунд среднеквадратичного значения джиттера навсегда похоронят мечты о создании усилителя c отношением сигнал/шум лучше 100 дБ. В цифровых ШИМ системах добавляется ошибка квантования, порождаемая конечным числом уровней ШИМ.

Методы формирования шумов совершенствовались на протяжении многих лет, в результате чего появились новые технологии, такие, как PDM (pulse-density modulation - плотностно-импульсная модуляция) и дельта-сигма модуляция, которые, теоретически, позволяют сместить спектр шумов дискретизации далеко за область полезных частот, где они могут быть эффективно подавлены фильтрами.

Компаратор должен иметь большую скорость нарастания напряжения и, желательно, двухтактный выходной каскад. Хороший выбор - микросхема , имеющая время задержки распространения сигнала 45 нс и время нарастания/спада 1.2 нс. Немаловажное значение имеет качество трассировки печатной платы, чтобы предотвратить возникновение «звона». Помимо этого, весьма критична топология распределения шин питания и развязывающих конденсаторов. Небрежность в этом вопросе может приводить к увеличению уровня джиттера выходного сигнала. Следует, также, избегать чрезмерной емкостной нагрузки на линию, соединяющую выход модулятора с драйвером MOSFET транзисторов.

Несимметричный или дифференциальный?

Прежде чем выбирать, каким будет выходной каскад, - несимметричным или дифференциальным, - очень важно понять влияние этого выбора на характеристики конструкции. Несимметричный режим выгоднее с точки зрения количества и цены компонентов, но для предотвращения постоянного смещения выхода потребуется развязывающий конденсатор. Кроме того, все колебания напряжения питания неизбежно передаются прямо на выход, еще более увеличивая уровень искажений. Поэтому использовать несимметричную схему без обратной связи невозможно.

Дифференциальный режим затратнее, но дает много преимуществ, таких как меньший уровень четных гармоник, улучшенная устойчивость к колебаниям питающего напряжения, меньшая мощность, рассеиваемая каждым транзистором, и более простое решение задачи устранения постоянного смещения, не требующее развязывающих конденсаторов. Обратная связь может улучшить выходной сигнал, однако дифференциальная топология без обратной связи искажает сигнал намного меньше, чем несимметричная.

Выходной MOSFET каскад и драйвер

В схеме, изображенной на Рисунке 2, важны все элементы, но два из них оказывают наибольшее влияние на искажения выходного сигнала. Это MOSFET транзисторы и их драйвер. Качество звука очень зависит от формы импульсной последовательности, и любое отклонение ШИМ сигнала от идеального ухудшает его качество.

Для этого каскада важны, и должны быть рассмотрены, многие характеристики MOSFET транзисторов:

  • ток управления и входная емкость;
  • мертвое время (что важно для исключения сквозных токов);
  • сопротивление открытого канала;
  • время включения/выключения.

Любой из этих параметров влияет не только на качество звука, но и на рассеиваемую транзисторами мощность. «Мертвое время» - это задержка между выключением одного транзистора и включением другого, время, в течение которого оба транзистора выключены (или находятся в процессе выключения). При отсутствии мертвого времени, скорее всего, будет возникать ситуация, когда один транзистор выходного каскада уже открыт, а другой еще не закрыт, вследствие чего ток от положительной шины питания будет протекать к отрицательной шине напрямую через два открытых транзистора. Этот ток называется сквозным и должен быть минимизирован подбором соответствующего мертвого времени. Сквозной ток является основной причиной нелинейных искажений в системах класса D. Недостаточное мертвое время может ухудшить коэффициент нелинейных искажений на проценты. Выбор MOSFET транзисторов и симметрия плеч выходного каскада - важнейший момент в проектировании высококачественного усилителя.

Ток управления затвором MOSFET транзистора должен соответствовать его емкости, чтобы иметь малые времена нарастания и спада импульсов на входе транзистора, которые, в свою очередь, обеспечат крутые фронты в выходном сигнале. В свою очередь, источник питания должен быть способен отдавать большие импульсные токи.

Мощность рассеивания и правильный выбор MOSFET транзистора

Транзисторы в переключающих каскадах класса D преобладающую часть времени полностью открыты или полностью закрыты, и рассеиваемая ими мощность минимальна. Как видно из Рисунка 1, в системах класса D используются двухтактные, каскады, в полу- или полномостовой конфигурации, выходными сигналами которых являются прямоугольные импульсы. При этом поочередно, равное время, открыт то один MOSFET транзистор, подключенный к положительной шине питания, то другой, подключенный к отрицательной шине. Теоретически, это могут быть два разных транзистора, с каналами N и P типа, но практически предпочтительнее использовать сдвоенные N-канальные транзисторы, обеспечивающие повышенную симметрию и лучшее мертвое время. Включенный MOSFET транзистор рассеивает очень небольшую мощность, являющуюся функцией прямого падения напряжения, зависящего, в свою очередь, от сопротивления открытого канала R DS(ON) . Это имеет огромное значение, не только с точки зрения экономии энергии, но, прежде всего, с точки зрения габаритов схемы. К примеру, выходной каскад 100-ваттного усилителя класса A рассеивает в виде тепла мощность 300 Вт и требует очень больших транзисторов и теплоотводов, усилитель класса AB вполне можно сделать, используя транзисторы в корпусах TO3 и радиаторы традиционных размеров, а для усилителя класса D будет достаточно транзисторов в корпусах SOT223 или TO89. А это означает, что хороший усилитель мощности может иметь относительно небольшие размеры, которые, по мере развития технологии, будут постоянно уменьшаться, благодаря росту эффективности и снижению габаритов используемых приборов.

Одна из распространенных ошибок заключается в том, что, стремясь к наивысшей эффективности, разработчики выбирают MOSFET транзисторы с наименьшим значением R DS(ON) и ожидают, что транзисторы будут совершенно холодными. В реальности все может быть совершенно по-другому.

P D = P RESISTIVE + P SWITCHING = R DS(ON) × I LOAD 2 + (C RSS × V 2 × F SW × I LOAD) / I GATE

I LOAD - ток нагрузки
C RSS - емкость затвора
V - размах напряжения на нагрузке
F SW - частота переключения
I GATE - ток затвора

К примеру, давайте представим, что для выходного каскада мощностью 100 Вт мы выбрали замечательный транзистор фирмы , имеющий R DS(ON) = 3.9 мОм и C RSS = 455 пФ, который управляется MOSFET драйвером с выходным током 1 А. Каскад нагружен сопротивлением 8 Ом, размах напряжения на нагрузке 50 В при частоте сигнала 100 кГц. Рассеиваемая транзисторами мощность не превысит:

P D = 0.0039×5 А + (455×10 -12 ×50 2 ×100×10 3 ×5 А) / 1 А = 0.0195 + 0.568 = 0.588 Вт

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо


обзавёлся очень сильной дискуссией очень грамотных специалистов, которые..
..которые разжевали всё до такой степени, что описали всю суть практически до уровня электронов в проводниках.
Выражаю им ОГРОМНУЮ и искреннюю благодарность и признательность.

=========================


Итак.
Хочешь что-то — сделай это САМ...
В интернете, действительно, есть всё — надо только найти.
Найти и..
..и систематизировать всё в одном месте. Т.к. в интернете вся эта информация присутсвует, но она размазана по разным местам по маленьким кусочкам -- в одном месте упоминается одно, в другом другое, а общей картины нет. НО.. Но если собрать все эти кусочки в одном месте (файле) и затем отредактировать в единый информационный поток, то
, то можно собрать из них полную картину (как паззл/puzzle) ,
что я, собственно, и собираюсь сделать.

Итак. забив в поиске "полностью цифровой усилитель" сразу получаю практически полноценный ответ:

"полностью цифровой усилитель" ссылка 1 = http://www.diyaudio.ru/forum/index.php?topic=4078.0
цитата
:
Полностью цифровой усилитель
« : 06 Августа 2014 , 11:47:55 »

Мучаю на макете полностью цифровой усилитель на техасском чипсете.
Модулятор TAS5548, выходной каскад TAS5612LA.
Вход многоканальный I2S,
источник - компьютер,
USB интерфейс - Фламенко.
Управление модулятором пока от Arduino.
В качестве РГ - энкодер.
Питание всего 12В, выходная микруля греется не сильно, даже не стал ставить радиатор.
Мощности для акустики 84 Дб - за глаза.
""""""""""""""""" конец цитаты """"""""""""""""""

===================================

Первое что бросается в глаза -- это, а что такое «I2S»

"""""""""""""" Цитата """""""""""""""
Универсальное устройство на sc4392
предназначено для
приема аудиоданньіх по SPDIF и преобразованию в i2s
и коммутацию нескольких источников цифровьіх аудиоданньіх.
На борту
4 входа:
3 SPDIF из них один разведен под TOSLink,
1 кв.шина, максимальная частота семплирования 192КГц
2 вьіхода:
Кв.шина и повторяющий ее SPDIF вьіход.
"""""""""""""" конец цитаты """""""""

Дальше я сохраню в этом же файле свою переписку 2015 года с человеком, который.. казался мне большим докой в цифровых усилителях.
"Меня зовут Костяной Сергей Александрович. Сейчас живу в глубинке в Воронежской области. "

"""""""""""""" Цитата """""""""""""""

Привет!

Иногда пишут как IIS

На вход TAS5548 нужен i2s.

"""""""""""""" конец цитаты """""""""


Переписка целиком
Привет!

Честно говоря у меня сейчас мало времени.

С первым девайсом:

Из всей начинки, там позного: Блок питания, модулятор, и выходной каскад.

5.1 - 6 каналов. Тебе нужно не i2s, а i6s:)

Это чудо подключаем к модулятору. Модулятором можно управлять через USB-i2C переходник.
Ну конечно нужен будет некий софт, если нужно что-то крутить на аппаратном уровне.
Лучше все делать софтом, на компе.

Звуковая карта не нужна. В ней есть смысл, если есть аппаратная доработка звука или мегакрутой ЦАП для аналогового усилителя.

В Tomson можно убрать АЦП, и прилепить вместо него более простой i2s интерфейс например CM6631A
Каналы крутить через встроенное MCU.

По поводу вывода i2s из компа. В теории это можно сделать. Даже из встроенного кодека.
Но неужели встроенный в мост контроллер звука такой хороший?
Опять же CM6631A или XMOS - более правильное направление.

Вообще я смысла не вижу, разве что, при наличии Creative x-fi с аппаратным улучшайзером...

Непосредственный вывод i2s очень не дальнобойный. Максимум 30 см до модулятора, или начнутся сбои.
Лучше посадить чип модулятора прямо над старым ЦАП. PWM можно уже будет удлинить на большие расстояния, без особых проблем.

Но процы сейчас такие мощные, что и софтовый аудиоплагин можно юзать.
Опять же CM6631A или XMOS - более правильное направление, чем ковырять звуковухи тем более на материнке.
Например это https://www.minidsp.com/products/usb-audio-interface/usbstreamer

По поводу ручек.
Аналоговая ручка ни о чем не говорит. Сигнал с регулятора может быть оцифрован MCU и даваться по i2c в модулятор.
Может не по шине, а на управляемый аттенюатор. В общем нужно разбирать и смотреть.

По поводу TOSHIBA SD-530 E - да, там может быть крутой ЦАП в маркетинговых целях. Скорей всего в него заводится i2s.

Чтобы достать от туда i2s нужен переходник на парафазную линию через специальный драйвер. Потом в RJ-45.
Потом в приемном устройстве RJ-45. Приемник парафазного сигнала. Потом получаем дискретный i2s. Его можно подать в ЦАП или модулятор.

Это все очень не просто, не благодарно и не выгодно. У меня мало времени, чтобы бороться с буржуйским маркетингом.

Никаких крутых DVD и блюреев. Только HTPC с мощным процом, чтобы 4К крутил, с запасом на обработку звука и прочих шлюх.

Звуковые карты не нужны. Нужен крутой аудио-интерфейс с достаточным количеством каналов.

Например это https://www.minidsp.com/products/usb-audio-interface/usbstreamer
10 x OUT multi-channel USB audio interface (8 x I2S)
Можно сделать отдельно многополоску и настраивать все программно, прямо на компе. И без маркетинговых кровопийц.

Вопросы?

В письме от 8 июня 2016 01:44:14 Вы написали:
> ПРИВЕТствую!!! о Сергей:)
>
> снова нуждаюсь в помощи профессионала.
>
> Нашёл тут DVD домашний кинотеатр в одном - Tomson (модель уточню)
> суть в том, что выход не в виде линейных выходов 5.1
> а на выходе 5.1 цифровой усилитель - 5.1 выходы сразу на колонки включая даже ПАССИВНЫЙ сабвуфер.
>
> Мы когда-то хотели заказывать в Китае такую плату. так она денег стоит.... не копеечная. А тут она же самая, видимо.
>
>
> Но по законам запланированного устаревания у модели НЕТ входов.
> т.е.
> лазер от времени стал читать плохо, часто заикаится. Да и время болванок "ушло безвозвратно".
>
> А использовать ВНУТРЕННИЙ ПОТЕНЦИАЛ = полноценный цифровой усилитель 5.1 - НЕТ возможности.
>
> Сделан 2.0 АНАЛОГОВЫЙ вход. и тот звучит не плохо. Но это же сколько преобразований
> сперва из цифры в аналог, что бы подать на аналоговый же вход, после которого снова АЦП что бы подать на цифровой усилитель цифру.... 3 преобразования из исходной ЦИФРЫ в ту же ЦИФРУ....
>
> Кому я чего объясняю:)) - ты сам мне это объяснял в прошлом письме.
>
>
>
> Вопрос.
>
> Расскажи как вывести из компютера -- из звуковой карты этот самый I2S ?
>
>
> Сколько бы ты взял (рублей) за такую работу?! -- вот только как бы тебе переслать аппарат...(ну это, в принципе, решаемо)
>
>
>
> Есть эта же модель Тоmson , но более старшая, у неё уже сделан хотя бы ОПТИЧЕСКИЙ вход.
>
> секундочку у меня же есть документация
>
> THOMSON DPL913VD.pdf
> http://vk.com/doc5542158_437445096
>
> это кажется тот что у меня
>
>
> А вот более старшая модель 950:
> http://vk.com/doc5542158_437451143
>
>
> а вот тот преобразователь который....
> http://vk.com/doc5542158_437451125
>
> на который видимо и надо заводить I2S со звуковой карты.
>
>
> Если освоить это, то можно делать бизнес,
> т.к. народ сейчас тупо ВЫКИДЫВАЕТ такие аппараты
> т.к. викидывают и все диски... а он кроме как с диска иначе... ну разве что СТЕРЕО усилитель... но людям НЕ надо.
> я нашёл на помойке....
>
> ===========================
> ===========================
>
>
> Вопрос 2
>
> Подарил мне друг систему
>
> Cambrige DTT 2500
> фотка = http://vk.com/photo5542158_416539186
>
> по Coaxial он имеет внутренний AC3 Dolby Digital деккодер. К сожаления нет DTS -- вот уроды....
> DTS раскодировать нынче не проблема - и я прикупил себе топовую Creative ZxR
>
> но эти "умные люди" предвидели это и кроме ОТСУТСВИЯ DTS
> они ещё предусмотрели и ОТСУТСВИЕ 5.1 входов.
> Есть только вход 4.0 , при том что усилитель 5.1
>
> "висит груша - нельзя скушать"
>
> есть усилитель 5.1 уже ВТОРОЙ, но я не могу им воспользоваться.
>
>
> но на этом DTT2500
> есть АНАЛОГОВАЯ ручка регулировки уровня громкости ЦЕНТРАЛЬНОГО канала
> при том что нет для него аналогового входа
>
> и это наводит меня на мысль, что
> раз ручка АНАЛОГОВАЯ,
> то она может регулировать лишь АНАЛОГОВЫЙ сигнал,
> т.е. можно подпаться к ней и подавать внешний вход ЦЕНТРАЛЬНЫЙ прямо напрямую на неё...
>
> Но там же ещё где-то схема обрезания БАСОВ, т.к. колоночки лишь СЧ/ВЧ, весь бас обрезается в САб.
> а тут уже скорее всего ОБРЕЗАНЫЙ аналоговый сигнал.
>
> т.е. завести то сигнал я может так и смогу, но...
> но таким образом я рискую перегрузить колоночку и усилитель НЕ обрезанными БАСАМИ.
>
> Колончки в силу своего микро размера ОЧЕНЬ НРАВЯТСЯ
> я расставил их вокруг себя
> в непосредственной близости
> и абсолютно симметрично
> чем достиг коллосальный эффект от симметрии.
> все 5.1 эффекты передаются максимально 100% (ну с поправкой на обрезку басов в единый саб.)
>
> но вот я не могу подать центральный канал....
>
> и кажется даже если подам напрямую на регулятор,
> то я должен буду как-то сам куда-то заранее обрезать с его БАС.
>
> А ведь аппарат Cambrige -- и звучит... ну мне для дома хватает.
>
> Как бы мне научиться подавать центральный канал.
> ведь по SpDif Coaxial он понимает все 5.1 - но там по ЦИФРЕ...
> а тут мне надо подать АНАЛОГОВЫЕ 5.1
>
> =============
> =============
> =============
>
>
> и третья задача.
>
> есть DVD Player TOSHIBA SD-530 E
>
> http://www.stereo-journal.ru/149491-toshiba_sd_530e.html
>
>
> на борту которого написано, что в нём установлен некий 192 kHz 24 bit ЦАП/DAC
> опять же хотелось бы его использовать в качестве СТЕРЕО ЦАП
>
> сам я врядли смогу сделать - я математик. я резистор от транзистора с трудом отличу.
>
> А вот за задачу с Tomson я готов заплатить, ОБОСНОВАНУЮ цену.
>
> ну или и вправду попробовать найти какие провода надо искать (по каким признакам?)
> по идее надо соединить I2S со звуковой карты
>
> видимо с его внутреннего ЛАЗЕРА идёт та же самая I2S , как и на звуковой карте.
> но эти стандарты к сожалению не имеют обукновения выводиться наружу,
> хотя с появлением ЦИФРОВЫХ усилителей
> приходит именно их пора.
>
>
> =========================
> =========================
> =========================
>
>
>
>
>
> >Пятница, 6 ноября 2015, 0:36 +03:00 от Сергей Костяной :
> >
> >Привет!
> >Выбирай http://kostyanoysa.ru/?p=154
> >
> >Честному цифровому усилку нужен цифровой звук! i2s!
> >https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf
> >Иногда пишут как IIS
> >
> >Эти последовательные i2s данные могут быть преобразованы в аналог мага-дорогой микросхемой ЦАП, и усилены мегадорогим усилком.
> >Либо!
> >Эти данные поступают в модулятор (например TAS5548), который переведет их в точную длительность открытия ключевых транзисторов, а звук в аналоговый преобразуется уже на выходном фильтре.
> >
> >В первом случае мы получаем шумы и искажения ЦАП, а потом их еще и усиливаем, с посторонними помехами, да и теряем на КПД АВ усилителя.
> >Во втором случае получаем идеальный выходной сигнал. Качество звучания во много зависит от согласования выходного фильтра с АС.
> >
> >Так чтобы обойтись без аналога, надо иметь звуковую карту с цифровым выходом или SPDIF который потом опят преобразуется в I2s
> >SPDIF и I2s - цифровые интерфейсы но протоколы разные.
> >На вход TAS5548 нужен i2s.
> >На выходе TAS5548 поучаем ШИМ и подаем на выходной чип. Если хочешь - можно взять не чип, а драйвер затвора (типа IR2110) и мощные полевые транзисторы (типа IRFP4321). Будет "дубово"!
> >
> >В письме от 6 ноября 2015 00:11:39 Вы написали:
> >> ПРИВЕТствую Сергей.
> >>
> >> Хочу разобраться в одной звуко.. инженерной задачке
> >> уверен тебе будет интересно,
> >> а быть может, ты "сто лет в обед" знаешь об этом.
> >>
> >>

Традиционные аудиоусилители классов А, В и АВ для мобильных устройств с автономным питанием уже давно перестали устраивать разработчиков из-за их низкого КПД и, как следствие, высокого расхода энергии батареи или аккумулятора. Усилители класса D имеют гораздо более высокий КПД, поэтому именно они наилучшим образом удовлетворяют предъявленным требованиям к современной портативной технике. Эти усилители применяются и в стационарной технике (телевизоры, персональные компьютеры, домашние или автомобильные стереосистемы и даже мощная усилительная техника для театров и концертных залов) благодаря уменьшению габаритов, веса и цены при сопоставимых параметрах качества с приборами предыдущих поколений классов А, В и АВ. Достижения полупроводниковой технологии последних лет позволили компании Texas Instruments разработать микросхемы для создания высококачественных усилителей звуковой частоты класса D с максимальной выходной мощностью от единиц до нескольких сотен Вт.

Рассеиваемая мощность усилителя, работающего в классе D, существенно меньше, чем у аналогичных приборов класса АВ, работающих в тех же режимах. Это проиллюстрировано на рис. 1 (в качестве примера взята микросхема Texas Instruments TPA2012D2, предназначенная для усилителей портативной техники).

Рис. 1.

Из рисунка 1 хорошо видно, что при одинаковой выходной мощности усилитель класса D имеет потери мощности в несколько раз меньшие по сравнению с аналогичными усилителями класса АВ во всем диапазоне выходных мощностей. Наибольший выигрыш получается при средней выходной мощности. Именно в этом режиме чаще всего и используется аппаратура для воспроизведения звука. Отмеченные свойства дополняет рис. 2, иллюстрирующий зависимости КПД от выходной мощности этих же усилителей при режимах измерения, аналогичных рис. 1. При малой и средней мощностях КПД усилителя класса D в два-три раза выше, чем у усилителя класса АВ.

Рис. 2.

Сравнение эффективности и рассеиваемой мощности для усилителей с очень низкой выходной мощностью может оказаться не в пользу усилителей класса D из-за относительно высокой мощности высокочастотного модулятора, преобразующего аналоговый сигнал в прямоугольные импульсы с широтно-импульсной модуляцией (ШИМ). По этой причине линейные усилители класса АВ при очень низких выходных мощностях иногда оказываются предпочтительнее класса D. Принцип работы простейшего усилителя класса D без обратной связи поясняет рисунок 3.

Рис. 3.

Входной сигнал предварительного усилителя модулируется треугольными колебаниями для преобразования в широтно-модулированные импульсы, которые усиливаются выходным каскадом, работающим в ключевом режиме. Далее LC-фильтр низких частот интегрирует импульсы разной длительности и срезает высокочастотные составляющие спектра, оставляя только выделенный сигнал звуковой частоты. Осциллограммы процесса ШИМ для усилителя класса D, выполненного по мостовой схеме, приведены на рис. 4. Модуляция в усилителях класса D может осуществляться разными способами, но наиболее распространена именно ШИМ.

Рис. 4.

Звуковой сигнал сравнивается с сигналом пилообразной или треугольной формы фиксированной частоты. Первый усилитель на рисунке 3 необходим для предварительного усиления и смещения сигнала до нужного уровня. Второй усилитель и генератор треугольного напряжения образуют модулятор ШИМ. На рисунке 4 длительность широтно-модулированных импульсов пропорциональна уровню входного аналогового сигнала. Мостовой схеме необходимы импульсы ШИМ противоположной полярности для управления другим плечом моста. На рисунках 3 и 4 показаны упрощенные варианты схем. В реальных схемах усилителей класса D обязательно вводятся формирователи времени паузы между импульсами для исключения одновременного включения двух выходных транзисторов и устранения сквозных токов. Частота модуляции и среза низкочастотного фильтра обычно выбирается в несколько раз больше верхней граничной частоты пропускания усилителя. К выбору элементов LC-фильтра необходимо относиться очень внимательно. Этому вопросу уделяется особое внимание в документации производителя и руководствах по применению.

Texas Instruments выпускает микросхемы для создания усилителей класса D низкой, средней и высокой мощности. Параметры для усилителей класса D низкой мощности приведены на рис. 5 и в табл. 1.

Рис. 5.

Таблица 1. Микросхемы Texas Instruments для усилителей класса D c низкой и средней выходной мощностью (аналоговый вход)

Наименование Описание Стерео/ моно Pвых, Вт Rнагр. (min), Ом Напряжение
питания, B
Half Power THD+N* (%),
F = 1 кГц
PSSR** дБ Корпус(а)
(min) (max)
TPA2017D2 SmartGain, AGC/DRC, GPIO интерфейс Стерео 2,8 4 2,5 5,5 0,2 80 QFN-20
TPA2000D2 усилитель средней мощности Стерео 2,5 3 4,5 5,5 0,05 77 TSSOP-24
TPA2000D4 усилитель для стереотелефонов Стерео 2,5 4 3,7 5,5 0,1 70 TSSOP-32
TPA2012D2 усилитель в корпусе WCSP 2 x 2 мм Стерео 2,1 4 2,5 5,5 0,2 75 WCSP-16, QFN-20
TPA2016D2 SmartGain, AGC/DRC, I2C интерфейс Стерео 1,7 8 2,5 5,5 0,2 80 WCSP-16
TPA2001D2 усилитель низкой мощности Стерео 1,25 8 4,5 5,5 0,08 77 TSSOP-24
TPA2100P1 для пьзокерамического излучателя Моно 19 Vpp 1,5 мкФ (пьезо) 2,5 5,5 0,2 90 WCSP-16
TPA2035D1 дифференциальный вход, 1,5 х 1,5 мм Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9
TPA2032/3/4D1 дифференциальный вход, фикс. усиление Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9
TPA2013D1 Моно 2,7 4 1,8 5,5 0,2 95 WCSP-16, QFN-20
TPA2036D1 защита от КЗ с автовосстановлением Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2031D1 аналог TPA2010D1, но с плавным стартом Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2010D1 дифференциальный вход;1,45 х 1,45 мм Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2018D1 SmartGain AGC/DRC, I2C интерфейс Моно 1,7 8 2,5 5,55 0,2 80 WCSP
TPA2014D1 встроенный повышающий DC/DC-преобр. Моно 1,5 8 2,5 5,5 0,1 91 WCSP-16, QFN-20
TPA2006D1 дифференциальный вход Моно 1,45 8 2,5 5,5 0,2 75 QFN-8
TPA2005D1 дифференциальный вход Моно 1,4 8 2,5 5,5 0,2 75 MSOP-8, QFN-8, BGA-15
*Half Power THD+N - (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц). **PSSR - Power Supply
Rejection Ratio - коэффициент подавления помех по цепям питания

В первую очередь эти микросхемы предназначены для встраивания в мобильные устройства. Подавляющее большинство таких усилителей расчитано на напряжение питания от 2,5 до 5,5 В, но микросхема одноканального усилителя TPA2013D1 имеет расширенный диапазон напряжений питания от 1,8 до 5,5 В благодаря встроенному повышающему DC/DC-преобразователю (Boosted DC/DC ). Это позволило обеспечить постоянство выходной мощности при всем диапазоне рабочих напряжений питания по сравнению с обычными усилителями класса D, что наглядно проиллюстрировано на рис. 6.

Рис. 6.

При выходной мощности около 1,5 Вт в диапазоне напряжений питания от 2,3 до 4,8 В характеристика находится в пределах ±0,1 Вт. Большинство обычных усилителей этого класса имеют практически линейную зависимость максимальной выходной мощности от напряжения питания. Преимущество усилителей со встроенным повышающим DC/DC-преобразователем - возможность работы при гораздо более низком напряжении питания батареи (или при ее более глубоком разряде), что повышает степень использования автономного источника питания.

Структурная схема микросхем TPA2013D1 и TPA2014D1 со встроенным повышающим DC/DC-конвертером показана на рис. 7.

Рис. 7.

В микросхемах предусмотрена защита от нежелательных переключений при коммутации повышающего DC/DC-преобразователя. Встроенный стабилизатор обеспечивает стабильность характеристик в широком диапазоне напряжений питания. При необходимости выход повышающего DC/DC-преобразователя можно использовать для питания маломощных дополнительных схем портативного устройства. Если внимательно посмотреть на параметр PSSR (коэффициент подавления помех по цепям питания) в табл. 1, то бросается в глаза, что именно усилители со встроенными повышающими DC/DC имеют существенно лучшие значения этого параметра (91…95 дБ) по сравнению с остальными усилителями этого класса.

Среди усилителей с низкой и средней выходной мощностью есть и специализированный для работы на пьезокерамический излучатель с допустимой емкостью до 1,5 мкФ. При этом размах выходного напряжения на емкостной нагрузке достигает 19 В (от пика до пика) при минимально допустимом напряжении питания всего 2,5 В. Необходимо обратить внимание, что параметр (THD + N), характеризующий суммарные гармонические искажения вместе с шумовыми составляющими, измеряется на частоте 1 кГц при половине мощности от допустимого максимального значения.

На рис. 8 приведен навигатор для выбора микросхем усилителей класса D высокой мощности (отсчет высокой мощности для этого класса усилителей Texas Instruments начинает с 3 Вт).

Рис. 8.

Основные параметры этих микросхем сведены в табл. 2. Некоторые из микросхем, приведенных на рис. 8 и в табл. 2, относятся только к анонсированной продукции, поэтому возможность поставки образцов необходимо проверять на сайте производителя.

Таблица 2. Микросхемы Texas Instruments для усилителей класса D c высокой выходной мощностью (аналоговый вход)

Наименование Описание Pвых Вт Rнагр.
(min), Ом
Напряжение
питания, B
Half Power THD+N* (%),
F = 1 кГц
PSSR**, дБ Корпус(а)
(min) (max)
TAS5630 300 Вт усилитель (стерео)
с ОС
300 TBD*** TBD 50 TBD 80 QFP-64
TAS5615 150 Вт усилитель (стерео)
с ОС
150 TBD TBD 50 TBD 80 QFP-64
TAS5412 100 2 6 24 0,04 75 HTQFP-64
TAS5422 усилитель (стерео) с симметричным входом 100 2 6 24 0,04 75 HTQFP-64
TAS5414A усилитель (квадро) с несимметричным входом 45 2 8 22 0,04 75 SSOP-36, HTQFP-64
TAS5424A усилитель (квадро) с симметричным входом 45 2 8 22 0,04 75 SSOP-44
TPA3106D1 усилитель (моно) со входом синхронизации 40 4 10 26 0,2 70 HLQFP-32
TPA3123D2 усилитель (стерео) с несимметричным входом 25 4 10 30 0,08 60 HTSSOP-24
TPA3100D2 усилитель (стерео) 20 Вт 20 4 10 26 0,1 80 HTQFP-48, QFN-48
TPA3001D1 усилитель (моно) 20 Вт 20 4 8 18 0,06 73 HTSSOP-24
TPA3110D2 усилитель (стерео) с ограничением мощности 15 4 8 26 <0,1 70 TSSOP-28
TPA3122D2 15 4 10 30 <0,15 60 PDIP-20
TPA3107D2 усилитель (стерео) 15 Вт 15 6 10 26 0,08 70 HTQFP-64
TPA3124D2 усилитель (стерео) 15 Вт
с функцией Mute****
15 4 10 26 0,04 60 TSSOP-24
TPA3121D2 усилитель (стерео) с несимметричным входом 15 4 10 26 0,04 60 TSSOP-24
TPA3004D2 12 4 8,5 18 0,1 80 HTQFP-48
TPA3125D2 усилитель (стерео) в корпусе DIP-20 10 4 10 26 0,15 60 PDIP-20
TPA3101D2 усилитель (стерео) 10 Вт 10 4 10 26 0,1 80 HTQFP-48, QFN-48
TPA3111D1 усилитель (моно) с ограничением мощности 10 4 8 26 <0,1 70 TSSOP-28
TPA3002D2 усилитель (стерео) c регулировкой громкости 9 8 8,5 14 0,06 80 HTQFP-48
TPA3007D2 усилитель (стерео) 6.5 Вт 6,5 8 8 18 0,2 73 TSSOP-24
TPA3009D2 усилитель (стерео) c регулировкой громкости 6 8 8,5 14 0,045 80 HTQFP-48
TPA3005D2 усилитель (стерео) 6 Вт 6 8 8 18 0,1 80 HTQFP-48
TPA3003D2 усилитель (стерео) c регулировкой громкости 3 8 8,5 14 0,2 80 TQFP-48
TPA2008D2 усилитель (стерео) c регулировкой громкости 3 3 4,5 5,5 0,05 70 HTSSOP-24
*Half Power THD+N - (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц) **PSSR - Power Supply Rejection Ratio - коэффициент подавления помех по цепям питания ***TBD - To Be Documented - данные будут указаны производителем позднее ****Mute - приглушение звука

На основе микросхем Texas Instruments можно спроектировать усилитель класса D с выходной мощностью до 300 Вт при максимальном напряжении питания до 50 В.

Большой интерес для разработчиков могут представлять новые двухканальные микросхемы для усилителей этого класса TPA3122D2 и TPA3125D2 в корпусе DIP20.

Рис. 9.

Рис. 10.

Этот корпус удобен для монтажа и макетирования по сравнению с миниатюрными корпусами BGA с шариковыми выводами. Схема включения этих стереоусилителей отличается простотой и приведена на рис. 11. Синим цветом выделены параметры, соответствующие TPA3125D2 (мощность до 10 Вт), красным цветом - TPA3122D2 (мощность до 15 Вт).

Рис. 11.

Микросхемы имеют два входа регулировки усиления (четыре уровня), а также возможность отключения (Shutdown) и приглушения звука (Mute). На рис. 11 показан самый распространенный вариант включения двухканального усилителя в режиме SE (Single Ended Output - нагрузка подключается к каждому каналу - режим «стерео»). Для существенного увеличения выходной мощности рассматриваемых микросхем можно из двух каналов одной микросхемы создать одноканальный мостовой усилитель (схема BTL - Bridge Tied Load - подключение нагрузки к мостовой схеме). Принципиальные схемы включения микросхем TPA3125D и TPA3122D для мостового варианта усилителя класса D приведены в документации производителя для этих усилителей. На рис. 9 и 10 показаны зависимости выходной мощности от напряжения питания при одинаковых условиях измерения для схем в режиме «стерео» (SE) и для варианта мостового включения (схема BTL).

Измерение максимальной выходной мощности оценивается при конкретном значении суммы всех гармонических искажений и шумовых составляющих (THD + N). При переходе к мостовой схеме включения на одинаковых напряжениях питания, сопротивлении нагрузки и суммарных искажениях сигнала, выходная мощность возрастает в несколько раз. Поэтому в мощных усилителях обычно используют именно мостовую схему включения. Всего одна микросхема в корпусе DIP20 при таком подключении позволяет создать усилитель с максимальной выходной мощностью около 50 Вт при напряжении питания 30 В.

Шумы и нелинейные искажения

Основная информация о звуковом сигнале кодируется шириной импульсов на выходе модулятора. Необходимость введения задержки на величину паузы становится причиной нелинейных искажений, пропорциональных отклонению от точной длительности импульса модуляции. Сильное влияние на шумы оказывает коэффициент ослабления помех от источника питания PSSR. Из-за малого сопротивления шумы источника питания могут напрямую передаваться в громкоговоритель. ФНЧ срезает высокочастотные составляющие, но пропускает низкочастотные шумы. Для качественного звучания следует выбирать микросхемы с высоким значением коэффициента ослабления помех от источника питания. Эффективное решение перечисленных проблем - введение глубокой обратной связи, как это делается во многих линейных усилителях. Обратная связь с входа ФНЧ сильно повышает PSSR и ослабляет суммарные искажения и шумы, появляющиеся до LC-фильтра. Искажения в самом фильтре можно уменьшить включением громкоговорителя в цепь ОС. В грамотно спроектированных усилителях класса D с замкнутой ОС реально достижим суммарный коэффициент нелинейных искажений менее 0,01%.

Основные выводы

Все больше новых аудиоустройств создается на основе экономичных и эффективных усилителей класса D. Многолетний опыт и новые технологии компании Texas Instruments позволяют ей уверенно чувствовать себя на этом рынке с высокой конкуренцией. Усилители класса D позволяют, повышая эффективность, в несколько раз снизить габариты за счет исключения или значительного уменьшения размеров радиаторов в мощных схемах. Требуется менее мощный источник питания, что дополнительно снижает цену усилительного прибора. Для многих рассмотренных в статье микросхем Texas Instruments выпускает демонстрационные платы. Ознакомиться с решениями для построения аудиосистем можно на сайте производителя в разделе www.ti.com/audio , а по системам управления питанием - в разделе www.power.ti.com .

Получение технической информации, заказ образцов, поставка — e-mail:

ШИМ контроллер. Синхронизация. Обратная связь. Задание частоты. (10+)

Широтно-импульсная модуляция - ШИМ контроллер. Частота. Усилитель ошибки

Резистор и конденсатор, задающие частоту работы контроллера (RT, CT) . Контроллер работает на определенной частоте. Импульсы следуют с этой частотой. Контроллер меняет длительность импульсов, но не частоту. Это значит, что чем короче импульс, тем длиннее пауза и наоборот, а частота следования остается постоянной. Конденсатор, подключенный между CT и общим проводом, и резистор, подключенный между RT и общим проводом, задают частоту работы контроллера.

Импульсы синхронизации (CLOCK) . Иногда необходимо заставить работать несколько контроллеров синхронно. Тогда к одному контроллеру (ведущему) подключают частотозадающие конденсатор и резистор. На ножке CLOCK ведущего контроллера появляются короткие импульсы напряжения. Эти импульсы подаются на ножки CLOCK других контроллеров (ведомых). Ножки RT ведомых контроллеров соединяются с VREF этих контроллеров, а ножки CT - с общим проводом.

Напряжение для сравнения (RAMP) . На эту ножку нужно подать пилообразное напряжение. В момент возникновения импульса синхронизации на выходе контроллера появляется открывающее управляющее напряжение. Далее, как только напряжение на RAMP превышает напряжение на выходе усилителя ошибки на определенную величину, на выходе возникает закрывающее напряжение. Так что импульс длится от момента синхронизационного импульса до момента превышения напряжения на RAMP над напряжением выхода усилителя ошибки. Этим и достигается ШИМ. В классической схеме на RAMP подается напряжение с CT. Там как раз отличная пила. Есть и другие варианты включения.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Какая минимальная длинна импульса возможна в шим контроллерах (минимальный коэф фициент заполнения)? На практике получается что, к примеру, sg3525 запускается с минимальной шириной примерно 1 микросекунда. Есть ли методика расчета этого параметра? Очень актуально при разработке импульсных блоков питания с регулировкой напряжения от нуля вольт.

Фотореле. Автоматическое управление освещением. Световое реле. Автомат...
Автоматическое управление освещением. Включение вручную или при снижении освещен...

Металлоискатель самодельный. Сделать, собрать самому, своими руками. С...
Схема металлоискателя с высокой разрешающей способностью. Описание сборки и нала...

Полумостовой импульсный стабилизированный преобразователь напряжения, ...
Полумостовой преобразователь напряжения сети. Схема, онлайн расчет. Форма для вы...


Популярность усилителей класса D, предложенных еще в 1958 году, заметно выросла в последние годы. Что они собой представляют? Как соотносятся с другими типами усилителей? Почему класс D представляет интерес для аудиотехники? Что необходимо, чтобы сделать «хороший» усилитель класса D? Каковы особенности усилителей класса D от Analog Devices ? Ответы на эти вопросы следуют далее.

Немного о звуковых усилителях

Функция звукового усилителя заключается в воспроизведении входного сигнала элементами выходной цепи, с необходимой громкостью и мощностью, точно, с минимальным рассеянием энергии и малыми искажениями. Усилитель должен обладать хорошими характеристиками в диапазоне звуковых частот, который находится в области 20–20 000 Гц (для узкополосных динамиков, например сабвуфера или высокочастотной головки, диапазон меньше). Выходная мощность варьируется в широких пределах в зависимости от назначения усилителя - от милливатт в головных телефонах до нескольких ватт в телевизоре и персональном компьютере (ПК), десятки ватт в домашней или автомобильной стереосистеме; наконец, сотни ватт в наиболее мощных домашних или коммерческих аудиосистемах для театров и концертных залов.

Простейший вариант реализации усилителя звука - использование транзисторов в линейном режиме, что позволяет получить на выходе увеличенное входное напряжение. Усиление в данном случае обычно велико (по меньшей мере, 40 дБ). Часто используется отрицательная обратная связь, так как она улучшает качество усиления, снижая вызванные нелинейностью усилительных каскадов искажения и подавляя помехи от .

Преимущество усилителей класса D

В обычном усилителе выходной каскад содержит транзисторы, обеспечивающие необходимое мгновенное значение выходного тока. Во многих аудиосистемах выходные каскады работают в классах A, B и AB. В сравнении с выходным каскадом, работающим в D классе, мощность рассеяния в линейных каскадах велика даже в случае их идеальной реализации. Это обеспечивает D классу значимое преимущество во многих приложениях вследствие меньшего тепловыделения, уменьшения размеров и соответственно стоимости изделий, увеличения времени работы автономных устройств.

Линейные усилители, усилители класса D и мощность рассеяния

Выходные каскады линейных усилителей соединяются непосредственно с громкоговорителем (в некоторых случаях через емкости). Биполярные транзисторы в выходном каскаде обычно работают в линейном (активном) режиме при достаточно больших напряжениях между коллектором и эмиттером. Выходной каскад может также строиться на полевых транзисторах (рис. 1).

Рис. 1. Линейный выходной КМОП-каскад

Энергия рассеивается во всех линейных выходных каскадах, поскольку при обеспечении выходного напряжения V out , по крайней мере, в одном транзисторе каскада неизбежно возникает отличный от нуля ток I т и напряжение V т. Мощность рассеяния сильно зависит от начального смещения выходных транзисторов.

В выходном каскаде, выполненном в классе A, один транзистор служит источником постоянного тока, протекающего через громкоговоритель даже в отсутствие сигнала. (Примечание переводчика. Необходим запас как по увеличению тока [положительная фаза колебания], так и по уменьшению [отрицательная фаза]. ) В данном классе можно получить хорошее качество звука, однако мощность рассеяния очень велика из-за большого постоянного тока, протекающего через выходные транзисторы (там, где ток нежелателен), даже в отсутствие тока в громкоговорителе (там, где ток собственно и нужен).

Построение выходного каскада в классе B практически исключает постоянный ток через транзисторы и существенно уменьшает мощность рассеяния. Выходные транзисторы в этом случае работают по двухтактной схеме, верхнее плечо обеспечивает положительные токи через громкоговоритель, нижнее плечо - отрицательные. Мощность рассеяния уменьшается потому, что через транзисторы протекает только связанный с сигналом ток, постоянная составляющая практически отсутствует. Однако выходной каскад класса B дает худшее качество звука вследствие нелинейного характера выходного тока при переходе через ноль (переходные искажения), что имеет место из-за особенностей включения/выключения выходных транзисторов.

В классе AB, являющемся компромиссом между A и B классами, постоянный ток смещения существует, однако гораздо меньший, чем в классе A. Небольшого постоянного тока смещения оказывается достаточно для устранения переходных искажений и обеспечения тем самым хорошего качества звучания. Мощность рассеяния в данном случае оказывается больше, чем в классе B, и меньше, чем в A классе, но все же количественно ближе к классу B. В этом случае, как и в классе B, необходимо управление выходными транзисторами для обеспечения больших положительных и отрицательных выходных токов.

Тем не менее, даже хорошо спроектированный усилитель класса AB характеризуется значительной мощностью рассеяния, так как средние значения выходных напряжений обычно далеки от напряжений на шинах питания. Большое падение напряжения между стоком и истоком приводит, таким образом, к рассеянию энергии. Мгновенная мощность рассеяния равна I т xV т.

Благодаря совершенно иному принципу, мощность рассеяния усилителя класса D (рис. 2) гораздо меньше, чем в вышеперечисленных случаях. Ключи выходного каскада такого усилителя коммутируют выход с отрицательной и положительной шиной питания, создавая тем самым серии положительных и отрицательных импульсов. Такая форма выходного сигнала существенно уменьшает мощность рассеяния, так как при наличии напряжения ток через выходные транзисторы практически не идет (транзистор «закрыт»), либо, когда транзистор открыт и протекает ток, на нем падает небольшое напряжение V т. Мгновенная мощность рассеяния, I т xV т, в этом случае минимальна.

Рис. 2. Блок-схема усилителя класса D без обратной связи

Поскольку звуковые сигналы заметно отличаются от последовательности импульсов, для преобразования входного сигнала в набор импульсов необходим модулятор.

Частотный спектр сигнала модулятора содержит как звуковую составляющую, так и высокочастотную компоненту, которая появляется в процессе модуляции. Поэтому для уменьшения высокочастотной составляющей между выходным каскадом и громкоговорителем часто включается фильтр низких частот. Фильтр (рис. 3) должен обеспечивать минимальные потери, чтобы не растерять преимущество экономичности импульсного режима работы выходного каскада. Фильтр обычно строится из емкостных и индуктивных элементов.


На рис. 4 сравнивается мощность рассеяния (Pdiss) идеальных выходных каскадов классов A и B с измеренной мощностью рассеяния усилителя класса D - AD1994, в зависимости от мощности, подводимой к громкоговорителю для синусоидального сигнала (Pload). Значения мощности нормированы к уровню Pload max, при котором общие искажения выходного сигнала составляют 10%.


Зеленая вертикальная линия соответствует выходной мощности, при которой начинается «срез» синусоиды. Заметное различие в мощности рассеяния наблюдается во всем диапазоне выходных мощностей, особенно при низких и средних значениях. В начале «среза» мощность рассеяния выходного каскада класса D примерно в 2,5 раза меньше, чем в классе B, и в 27 раз меньше, чем в классе A. Заметим, что выходной каскад класса A рассеивает больше энергии, чем доходит до громкоговорителя - следствие большой постоянной составляющей тока смещения.

КПД выходного каскада, Eff (efficiency), определяется следующим образом:

В начале «среза» синусоиды Eff равен 25% для усилителя класса A, 78,5% для класса B и 90% для усилителя класса D. Предельные значения КПД усилителей класса A и B часто приводятся в различного рода руководствах.

Разность в мощности рассеивания увеличивается при умеренных уровнях мощности на нагрузке. Это существенно, поскольку даже при высоком уровне громкости преобладающие мгновенные значения мощности заметно меньше пиковых значений, P load max (в 5–20 раз, в зависимости от типа звука). Таким образом, для звуковых усилителей P load = 0,19P load max является разумным средним значением выходной мощности, для которой можно посчитать мощность рассеяния, P diss . При таком уровне выходной мощности усилитель класса D рассеивает в 9 раз меньше, чем усилитель класса B, и в 107 раз меньше, чем усилитель A класса. Для звукового усилителя с P load max =10 Вт средняя мощность P load = 1 Вт может рассматриваться как вполне реальная. При этих условиях выходной каскад класса D будет рассеивать 282 мВт, класса B- 2,53 Вт и A класса - 30,2 Вт. КПД при этом составит 78% для класса D, что несколко ниже 90% при максимальной мощности. Но даже в таком случае это гораздо больше, чем КПД каскадов класса B и A - 28% и 3% соответственно.

Это различие имеет важные последствия для конструкции системы. При уровне мощности более 1 Вт, во избежание перегрева, линейные выходные каскады требуют специальных средств охлаждения - обычно это массивные металлические радиаторы или вентиляторы . Если усилитель выполнен в виде микросхемы, для обеспечения отвода тепла может потребоваться специальный корпус, повышающий стоимость устройства. Это особенно критично, например, в плоских телевизионных приемниках, где пространство ограничено, или в автомобильной аудиотехнике, где налицо тенденция к увеличению числа каналов при сохранении того же объема.

При мощностях ниже 1 Вт основной проблемой является не разогрев, а собственно перерасход энергии. При автономном питании линейный выходной каскад опустошит батарею гораздо быстрее, чем усилитель класса D. В приведенном выше примере выходной каскад D класса потребляет в 2,8 раза меньше, чем выходной каскад класса B, и в 23,3 раза меньше, чем выходной каскад класса A, что позволяет существенно увеличить срок работы источников питания сотовых телефонов, портативных ПК, mp3-проигрывателей.

Для упрощения анализ был сосредоточен на выходных каскадах усилителя. Однако, если учесть все потери усилительной системы, при низких мощностях линейные усилители могут оказаться более предпочтительны. Причина в том, что при низком уровне мощности доля рассеиваемой при модуляции и генерации энергии может оказаться значительной. Таким образом, хорошо спроектированные усилители класса AB с малой мощностью рассеяния покоя могут конкурировать с усилителем класса D в разряде усилителей малой и средней мощности. Среди усилителей большой мощности устройства класса D являются непревзойденными по экономичности.

Усилители класса D: терминология

Мостовая и полумостовая схемы

На рис. 3 показано мостовое построение выходного каскада и LC-фильтра в усилителе класса D. Мост имеет два плеча, выдающих импульсы противоположной полярности на фильтр, состоящий из двух индуктивностей и двух емкостей. Каждое плечо моста содержит два выходных транзистора: верхнее плечо - транзистор, соединенный с положительной шиной питания (MH), и нижнее плечо - транзистор, соединенный с отрицательной шиной питания (ML). Верхнее плечо на рис. 3 образовано pМОП-транзистором. Для этой цели часто используют nМОП-транзистор, что позволяет уменьшить площадь и емкость, однако в этом случае необходима особая техника управления затворами транзисторов .


Рис. 3. Мостовое построение выходного каскада с фильтром нижних частот

В мостовых схемах нередко используется однополярное питание VDD, при этом вместо отрицательной шины питания VSS транзисторы подключаются к общему выводу. При данном напряжении питания мостовая схема включения, являясь по сути дифференциальной, может давать вдвое больший выходной сигнал и вчетверо большую мощность в сравнении с обычной схемой. Обычная (полумостовая) схема включения может иметь однополярное и двухполярное питание, однако при однополярном питании необходимо включать громкоговоритель через блокирующую емкость, чтобы убрать постоянную составляющую выходного напряжения, VDD/2.

Напряжение шин питания может колебаться относительно среднего значения за счет индуктивных токов LC-фильтра. Значение производной напряжения, dV/dt, может быть уменьшено включением больших емкостей между шинами питания, VDD и VSS.

В мостовых схемах индуктивная «подкачка» не страшна, так как индуктивный ток, втекающий в одно плечо, вытекает из другого, создавая таким образом локальную токовую петлю и минимально воздействуя на источники питания.

Факторы, определяющие конструкцию аудиоусилителя класса D

Пониженное энергопотребление делает усилитель класса D весьма привлекательным решением, при этом разработчик должен учесть ряд аспектов. Среди них:

  • выбор типоразмера выходных транзисторов;
  • защита выходного каскада;
  • качество звучания;
  • способ модуляции;
  • электромагнитные помехи;
  • конструкция LC-фильтра;
  • стоимость системы.


Рис. 4. Мощность рассеяния выходных каскадов классов A, B и D


Рис. 5. Выход по мощности усилителей классов A, B и D

Выбор типоразмера выходных транзисторов

Типоразмер выходных транзисторов выбирается для оптимизации теплорассеяния во всех режимах работы. Для того чтобы напряжение на транзисторе V т было малым при большом токе I т, транзистор должен иметь маленькое сопротивление во включенном состоянии, R on (обычно 0,1 или 0,2 Ом).

Для этого требуются большие транзисторы, с большой емкостью затвора (CG). Потребляемая цепями управления затворами мощность - CU 2 f, где C - емкость, U - изменение напряжения при переключении транзисторов, f - частота переключения. Потери на переключение становятся большими, если емкость или частота велики, поэтому существует практический верхний предел. Выбор типоразмера транзистора - компромисс между потерями V т x I т и потерями на переключение.

Резистивные потери будут преобладать при высокой выходной мощности, потери на переключение - при низкой. Производители силовых транзисторов стараются минимизиро- вать произведение Ron x CG для уменьшения общей мощности рассеяния транзисторных ключей и обеспечения гибкости при выборе частоты переключения.

Защита выходного каскада

Выходной каскад должен быть защищен от случаев, которые могут привести его к выходу из строя.

Перегрев. Хотя усилители класса D рассеивают меньше тепла, чем линейные, опасность перегрева все еще остается, если усилитель долго работает при повышенной мощности. Чтобы избежать этого, необходимы цепи температурного контроля. В простых схемах защиты выходной каскад выключается, если его температура, измеренная встроенным датчиком, превысит температурный порог отключения, и не включается, пока температура не придет в норму. Можно использовать и более сложные схемы контроля. Измеряя температуру, цепи управления могут плавно снижать громкость, уменьшая тепловыделение и удерживая температуру в заданных рамках - вместо периодического отключения звука.

Превышение абсолютной величины тока выходных транзисторов. Низкое сопротивление выходных транзисторов во включенном состоянии не является проблемой, если выходные цепи подключены правильно. Большие токи могут возникнуть в случае короткого замыкания выходной цепи либо при ее замыкании с положительной или отрицательной шиной питания. При отсутствии защиты такие токи могут привести к выходу из строя транзисторов или других цепей. Следовательно, необходимы защитные цепи по выходному току. В простых схемах защиты выходной каскад отключается при превышении порогового значения выходного тока.

В более сложных схемах выход сенсора тока вносит свой вклад в обратную связь усилителя, обеспечивая достаточно продолжительную работу усилителя без отключения. В таких схемах отключение производится только тогда, когда остальные меры защиты оказываются неэффективными. Качественные схемы обеспечивают защиту усилителя и от больших пиковых токов, возникающих вследствие резонанса в громкоговорителях.

Низкое напряжение. Большинство выходных ключевых каскадов работает нормально, если напряжение питания достаточно велико. Проблема обычно решается при помощи введения цепей блокировки, которые разрешают работу выходного каскада только если превышен определенный порог напряжения питания.

Синхронизация включения выходных транзисторов . Транзисторы верхнего и нижнего плеча имеют очень низкое сопротивление во включенном состоянии (рис. 6).


Рис. 6. Переключение транзисторов выходного каскада по принципу «отключил перед тем как включил»

Поэтому важно избегать ситуаций, когда оба транзистора включены одновременно, и большой сквозной ток протекает между положительной и отрицательной шинами питания. В лучшем случае транзисторы будут просто нагреваться и тратить лишнюю энергию, в худшем - они могут выйти из строя.

Управление по принципу break-before-make («отключил перед тем как включил») позволяет убрать сквозные токи выключением обоих ключей перед тем, как включить один из них. Интервал времени, в который оба транзистора выключены, называется временем простоя (nonoverlapped time) или «мертвым» временем (dead time).

Качество звучания

Для получения хорошего качества звучания усилителя D класса необходимо учесть ряд факторов.

Щелчки и треск , которые возникают при включении и выключении усилителя, могут раздражать пользователя. Они возникают в усилителях D класса, если не уделить самого пристального внимания состоянию модулятора, синхронизации выходного каскада и состоянию LC-фильтра в моменты включения и выключения.

Отношение сигнал/шум. Чтобы собственные шумы усилителя были практически не слышны, отношение сигнал/шум должно быть не менее 90 дБ у маломощных усилителей для портативных устройств, 100 дБ у усилителей средней мощности и 110 дБ у мощных устройств. Для достижения приемлемого отношения сигнал/шум при разработке усилителя необходимо отслеживать все отдельные источники шума.

Искажения включают нелинейность, определяемую способом модуляции и «мертвым» периодом, который необходим для предотвращения сквозных утечек. Информация об уровне сигнала обычно кодируется шириной импульса модулятора. Наличие «мертвых» периодов влечет за собой нелинейную ошибку тактирования по отношению к импульсам идеальной длины. Для минимизации искажений всегда лучше меньшая длительность «мертвых» периодов. Детальное описание метода оптимизации выходных каскадов для уменьшения искажений можно найти в .

Другими источниками искажений являются: различие длительностей фронтов и спадов выходных импульсов, несоответствие временных характеристик цепей управления выходными транзисторами, нелинейность компонентов LC-фильтра низких частот.

Подавление помехи от источника питания. В схеме на рис. 2 шумы источника питания проходят на выход практически без подавления. Это происходит потому, что выходные ключи коммутируют выход усилителя с шинами источников питания через очень низкие сопротивления. Фильтр подавляет высокочастотную составляющую шумов, но пропускает сигналы звуковой частоты, включая шумы. В дается хорошее описание эффекта шумов источника питания в мостовых и обычных двухтактных схемах выходных каскадов.

Если специально не заниматься проблемами качества звучания, трудно достичь величины подавления помехи от источника питания лучше, чем 10 дБ, и общих искажений менее 0,1%.

К счастью, решение этих проблем существует. Хорошо помогает глубокая обратная связь (исправно работающая во многих линейных усилителях). Обратная связь (ОС), взятая с входа LC-фильтра, значительно уменьшит влияние источника питания и ослабит все искажения, не относящиеся к самому LC-фильтру. Нелинейности LC-фильтра можно ослабить включением громкоговорителя в контур обратной связи. В хорошо спроектированном усилителе класса D можно достичь качества, достойного меломана,- подавление помехи источника питания более 60 дБ, искажения менее 0,01%.

Введение обратной связи несколько усложняет конструкцию усилителя. Необходимо учитывать проблему стабильности цепи обратной связи - это усложняет процесс проектирования системы. Для непрерывной обработки сигнала обратной связи необходимо включение специальных аналоговых цепей, что в итоге приводит к увеличению стоимости кристалла (в случае интегрального исполнения усилителя).

Для уменьшения стоимости ИМС некоторые производители предпочитают минимизировать или вообще убирать цепи обработки сигнала обратной связи. В некоторых решениях используется модулятор без обратной связи плюс аналого-цифровой преобразователь (АЦП) для контроля источника питания - для коррекции работы модулятора .

Это может улучшить подавление помехи источника питания, но практически не уменьшает общие искажения сигнала. В других цифровых модуляторах используется предкомпенсация ожидаемых ошибок тактирования выходного каскада, или коррекция ошибки модулятора. Это может хотя бы частично учесть некоторые типы искажений, но не все. Усилители класса D без обратной связи могут использоваться в тех случаях, когда к качеству звучания не предъявляется серьезных требований, в остальных случаях обратная связь представляется весьма желательной.

Способы модуляции

Модуляторы в усилителях D класса могут выполняться многими способами, что отражает большое количество соответствующих разработок. В данной статье будут представлены основные концепции построения модуляторов.

Все способы модуляции в классе D кодируют аудиосигнал в поток импульсов. Обычно ширина импульсов связана с амплитудой звукового сигнала, спектр импульсов при этом включает полезный звуковой сигнал и нежелательную (но неизбежную) высокочастотную (ВЧ) составляющую. Общая мощность высокочастотной составляющей во всех схемах примерно одинакова, так как практически одинакова мощность импульсов, а согласно теореме полноты суммарная мощность сигнала во временной области равна таковой в частотной области. Однако распределение энергии по частоте варьируется широко: в некоторых случаях это выраженные ВЧ-тоны над низким шумовым фоном, тогда как в других распределение таково, что тоны отсутствуют при более высоком основном фоне.

Наиболее общим способом модуляции является широтно-импульсная модуляция (ШИМ). Суть ее заключается в том, что звуковой сигнал сравнивается с сигналом треугольной или пилообразной формы фиксированной частоты (несущей). Получается поток импульсов той же частоты, при этом длительность каждого импульса пропорциональна величине звукового сигнала. В примере на рис. 7 аудиосигнал и треугольные импульсы центрированы относительно 0 В, тогда при 0 В на аудиовходе скважность выходных импульсов составит 50%. При большом положительном входном сигнале скважность будет около 100%, при большом отрицательном - около 0%. Если амплитуда звукового сигнала превысит амплитуду треугольных импульсов, получим полную модуляцию, когда переключение прекращается, скважность составит 0% или 100%.




Рис. 7. Широтно-импульсная модуляция

Способ ШИМ предпочтительнее потому, что может обеспечить до 100 дБ и выше подавление помехи источника питания при достаточно низкой частоте несущей - в несколько сотен килогерц, что дает возможность ограничения потерь при переключении выходного каскада. Кроме того, многие ШИМ устойчивы почти до 100%-ной модуляции, что обеспечивает стабильность работы усилителя на максимальных мощностях, вблизи области перегрузки. Тем не менее, ШИМ имеет и некоторые минусы. Во-первых, вследствие своей собственной природы, искажения вносит сам процесс ШИМ , во-вторых, гармоники несущей ШИМ дают помехи в радиодиапазоне длинных и средних волн, наконец, ширина импульсов ШИМ становится очень малой вблизи полной модуляции. Это в большинстве случаев вызывает проблемы в цепях управления выходным каскадом - из-за естественных ограничений процесс переключения не может быть настолько быстрым, чтобы получать импульсы длительностью в единицы наносекунд.

Поэтому полная модуляция часто недостижима в усилителях с ШИМ, что ограничивает максимальную мощность значениями ниже теоретических, учитывающих лишь мощность источника питания, сопротивление включенного транзистора и эквивалентное сопротивление громкоговорителя.

Альтернативой ШИМ является модуляция плотностью импульсов (МПИ), когда число импульсов за определенный отрезок времени пропорционально среднему значению звукового сигнала. Ширина отдельного импульса не является определяющей, как в ШИМ, вместо этого импульсы «квантованы» кратно периоду генерации модулятора. Одной из разновидностей МПИ является 1-битный сигма-дельта модулятор.

Значительная часть ВЧ составляющей мощности сигма-дельта модулятора распределена в широком диапазоне частот без концентрации в отдельные тоны с частотами, кратными несущей, как это происходит в ШИМ. Это дает преимущество сигма-дельта модуляции по сравнению с ШИМ в плане электромагнитных помех. Некоторая составляющая на частоте дискретизации в методе МПИ все же имеется, однако, учитывая, что типичные значения частоты составляют от 3 до 6 МГц, что значительно выше звукового диапазона, эти тоны сильно подавляются LC-фильтром нижних частот. Другим преимуществом сигма-дельта модулятора является то, что минимальная длительность импульса составляет один период дискретизации даже при больших сигналах, близких к условию полной модуляции. Это упрощает конструкцию цепей управления выходным каскадом и обеспечивает их надежную работу вплоть до теоретически максимального уровня мощности. Несмотря на это, обычные 1-битные сигма-дельта модуляторы не слишком часто используются в усилителях D класса , поскольку они обеспечивают лишь до 50% модуляции, и выход по мощности ограничен. Кроме того, для достижения приемлемого отношения сигнал/шум в звуковой полосе частот требуется не менее, чем 64-кратная передискретизация, что соответствует частоте импульсов минимум 1 МГц.

В последнее время были предложены усилители на основе автогенератора . В этих усилителях всегда используется обратная связь, определяющая частоту переключения модулятора, при этом внешний задающий генератор не применяется. Спектр ВЧ составляющей, как правило, более равномерен, чем в ШИМ. Благодаря обратной связи в данном случае возможно высокое качество звука, однако контур является автоколебательным, поэтому его трудно синхронизировать с какой-либо другой колебательной системой или соединить с цифровым источником звука без предварительного преобразования в аналоговый.

В мостовой схеме (рис. 3) для снижения электромагнитных помех может использоваться 3-ступенчатая модуляция. При работе мостового усилителя в обычном дифференциальном режиме плечо A должно находиться в противофазе с плечом B. Используется два состояния моста: плечо A подключено к положительной шине, плечо B- к отрицательной, и наоборот. В общем случае существует еще два состояния, в которых оба плеча моста находятся в одинаковых состояниях (оба подключены к положительной шине или оба к отрицательной). Одно из этих синфазных состояний может быть использовано наряду с дифференциальными для 3-ступенчатой модуляции, когда на дифференциальном входе LC-фильтра может быть положительный сигнал, нулевой или отрицательный. Нулевое состояние может использоваться как соответствующее низкому уровню мощности вместо переключения между положительными и отрицательными уровнями в 2-ступенчатой схеме. При нулевом состоянии снижается дифференциальная электромагнитная помеха на LC-фильтре, хотя, в то же время, увеличивается синфазная составляющая. Этот режим возможен только при малых выходных мощностях, так как лишь дифференциальные выходные сигналы способны обеспечить работу такой схемы на максимальной мощности. Схемы с переменным уровнем синфазного напряжения в 3-ступенчатой модуляции представляют в некоторой степени альтернативу усилителям с замкнутой обратной связью.

Уменьшение электромагнитных помех (ЭМП)

ВЧ-компоненты выхода усилителя класса D заслуживают отдельного рассмотрения.

При недостаточном понимании процессов и отсутствии адекватных мер эти части системы могут давать сильные ЭМП и мешать работе остального оборудования. Необходимо учесть два вида ЭМП: сигналы, излучаемые в пространство, и те, которые распространяются по проводам громкоговорителя и питающей сети. Спектры излучаемых ЭМП и тех, которые распространяются по проводам, определяет схема модуляции усилителя класса D. Однако существуют схемотехнические решения, позволяющие значительно снизить уровень ЭМП усилителя.

Весьма полезное правило заключается в минимизации размеров петли обратной связи, по которой протекают высокочастотные токи, так как воздействие ЭМП на другие цепи определяется площадью петли и расстоянием до них. Например, весь LC-фильтр, включая проводку громкоговорителя, должен размещаться как можно более компактно и близко к усилителю. Для уменьшения площади петель провода каждой из цепей должны размещаться ближе друг к другу (не лишней будет витая пара для проводки громкоговорителя).

Следует обратить внимание и на большие зарядные токи, возникающие при переключении выходных каскадов. Это происходит из-за наличия выходных емкостей, образующих петлю тока, содержащую обе емкости. ЭМП в данном случае зависят от уменьшения площади этой петли, что означает минимальные расстояния от емкостей до транзисторов, которые их заряжают.

LC-фильтры с тороидальными сердечниками, хорошо концентрирующими магнитное поле, также способствуют уменьшению электромагнитного излучения. Излучение от более дешевых, цилиндрических сердечников может быть снижено при помощи экранирования - разумного компромисса между ценой и ЭМ-помехами. В этом случае должны быть приняты меры для того, чтобы экранирование не ухудшило линейность индуктивности и таким образом снизило качество звука до неприемлемого уровня.

Конструкция LC-фильтра

Для уменьшения габаритов и стоимости системы большинство LC-фильтров для усилителей класса D представляют собой фильтры низких частот второго порядка. На рис. 3 представлена мостовая версия LC-фильтра второго порядка. Громкоговоритель позволяет предотвратить внутренний резонанс выходной цепи. Хотя импеданс громкоговорителя часто аппроксимируется простым резистором, его структура более сложна и содержит существенную реактивную составляющую. Чтобы грамотно спроектировать фильтр, необходимо использовать точную модель громкоговорителя.

При конструировании фильтра основной проблемой является наиболее узкая полоса пропускания с минимальным спадом в области верхних звуковых частот. Типичный фильтр имеет характеристику Баттерворта в 40 кГц для достижения максимальной равномерности характеристики в полосе пропускания). Данные таблицы 1 дают возможность построения фильтров с характеристикой Баттерворта для громкоговорителей с типичными импедансами и стандартных значений L и C.

Таблица 1. Стандартные значения L и C для построения фильтров

Если отсутствует обратная связь с громкоговорителем, величина искажений будет зависеть от линейности составляющих фильтра.

Факторы, определяющие конструкцию индуктивности. Важными факторами являются величина и форма сигнала тока, а также сопротивление обмотки.

Выбранная индуктивность должна иметь номинальные токи выше, чем максимальные токи усилителя. Причина в том, что сердечники индуктивностей испытывают магнитное насыщение, если величина тока становится слишком большой, а плотность магнитного потока - слишком высокой. Это приводит к значительному снижению индуктивности.

Чтобы получить индуктивность, необходимо намотать провод на сердечник. Если витков много, сопротивление, пропорциональное длине провода, становится значительным. Так как это сопротивление включается последовательно между плечом моста и громкоговорителем, часть выходной мощности будет рассеиваться на нем. Если сопротивление получается слишком большим, необходимо использовать провод большего диаметра или другой материал сердечника, чтобы снизить число витков без уменьшения индуктивности. И, как уже отмечалось выше, не следует забывать, что геометрия индуктивности также влияет на уровень ЭМП.

Стоимость системы

Каковы наиболее важные факторы, определяющие общую стоимость аудиосистемы на основе усилителя D класса? Как минимизировать затраты?

Активные компоненты усилителя класса D состоят из выходного ключевого каскада и модулятора. Стоимость их приблизительно такая же, что и линейного усилителя. Вопросы выбора возникают при рассмотрении остальных компонентов системы.

Пониженное тепловыделение усилителей класса D позволяет экономить на теплоотводах и вентиляторах. Усилитель класса D, построенный на интегральной схеме, может быть выполнен по той же причине в более компактном и дешевом корпусе, чем линейный усилитель той же мощности. При использовании цифрового источника звука для линейного усилителя, кроме того, нужен цифро-аналоговый преобразователь (ЦАП). Это, конечно, необходимо и для усилителя D класса, требующего аналогового входного сигнала, однако варианты усилителей с цифровым входом исключают необходимость использования ЦАП.

С другой стороны, принципиальным недостатком усилителей D класса является необходимость включения LC-фильтра. Его части, в особенности индуктивность, требуют места и увеличивают стоимость. В усилителях большой мощности цена LC-фильтра компенсируется большой стоимостью системы охлаждения. Однако в недорогих устройствах малой мощности стоимость индуктивности становится заметной. Например, стоимость микросхемы усилителя для мобильного телефона может быть меньше, чем общая стоимость LC-фильтра. И даже если пренебречь ценой, остается проблема занимаемого места для компактных устройств.

Это явилось причиной создания усилителей, в которых LC-фильтр отсутствует.

При таком решении экономится место и снижается стоимость, хотя и теряется преимущество низкочастотной фильтрации. В отсутствие фильтра уровень ЭМП может возрасти до неприемлемого уровня - если громкоговоритель не индуктивный и находится на удалении от усилителя, токовый контур и мощность усилителя достаточно велики. Нереальная для мощных усилителей, например, домашней стереосистемы, такая ситуация типична для мобильного телефона.

Существует и другой подход для уменьшения числа компонентов LC-фильтра. Можно использовать не мостовую, а обычную двухтактную схему выходного каскада, что позволяет вдвое сократить число емкостей и индуктивностей. Однако такая схема требует двухполярного питания, и дополнительная стоимость, связанная с созданием отрицательного источника питания, может оказаться критической, если, конечно, отрицательное плечо уже не используется для других целей, или усилитель имеет достаточное число каналов. Двухтактный выходной каскад может питаться и однополярным источником, но это несколько снижает выходную мощность и зачастую требует блокирующего конденсатора большой емкости.

Усилители D класса Analog Devices

Затронутые выше проблемы свидетельствуют, что разработка усилителя D класса - дело достаточно сложное. Для экономии времени разработчиков компания Analog Devices предлагает разнообразные усилители D класса на интегральных схемах, включающих усилители с программируемым коэффициентом усиления, модуляторы и выходные каскады. Для каждого типа усилителя имеются специальные демонстрационные отладочные платы. Конструкция плат позволяет эффективно, без изобретения очередного велосипеда, решить все проблемы, стоящие перед разработчиками усилителей класса D.

Рассмотрим, например, AD1990, AD1992, AD1994 и AD1996 - семейство интегральных схем (ИС), представляющих собой сдвоенные усилители средней мощности для двухканальных устройств, с выходной мощностью 5, 10, 25 и 40 Вт на канал соответственно.

Некоторые свойства этих ИС:

  • Звуковой усилитель D класса AD1994 включает два канала с программируемым усилением, два сигма-дельта модулятора и два выходных каскада, что позволяет использовать его в мостовых схемах с однополярным питанием. Он способен обеспечивать 25 Вт на канал в стереорежиме или 50 Вт в мостовой схеме включения с КПД до 90%. Для усиления сигнала имеется программируемый коэффициент усиления в 0, 6, 12 и 18 дБ.
  • Микросхема обладает встроенными устройствами защиты выходного каскада от перегрузки и перегрева, а также от сквозных токов. Благодаря специальному управлению синхронизацией и калибровке смещения, усилители обеспечивают минимальные помехи при включении/выключении. Следящая обратная связь и оптимизированное управление выходным каскадом обеспечивают уровень искажений 0,001%, динамический диапазон 105 дБ и подавление помехи источника питания более 60 дБ. Однобитный сигма-дельта модулятор специально усовершенствован для применения в усилителях D класса, обеспечивает среднюю частоту потока данных 500 кГц, высокое усиление до 90% модуляции и стабильность вплоть до полной модуляции. Специальный режим работы модулятора обеспечивает повышенную выходную мощность.
  • Логика, программируемый усилитель и модулятор питаются от источника 5 В, выходной каскад питается напряжением от 8 до 20 В. Рекомендуемый дизайн усилителя обеспечивает соответствие правилам FCC Class B по уровню ЭМП. При нагрузке 6 Ом и питании 5 и 12 В AD1994 рассеивает 487 мВт в покое, 710 мВт при выходной мощности 291 Вт и 0,27 мВт в режиме экономии. Выпускается в 64-выводном корпусе LFCSP, рабочий диапазон температур от –40 до +85 °С.

Технические характеристики звуковых усилителей класса D от Analog Devices содержатся в таблице 2.

Таблица 2. Звуковые усилители класса D от Analog Devices

Число каналов Выходная мощность (Вт) КПД (%) Динамический диапазон (дБ) Сигнал/шум (дБ) Общие искажения (дБ) Напряжение питания (В) Ток потребления
AD1990 2 5 84 102 102 -90 4,5–5,5 20 мA
AD1991 2 20 87 - - - 4,5–5,5 2,75 мA
AD1992 2 10 84 102 102 -90 4,5–5,5 20 мA
AD1994 2 25 84 102 102 -90 4,5–5,5 20 мA
AD1996 2 40 84 102 102 -90 4,5–5,5 20 мA
SSM2301 1 1.4 84 - 98 -67 2,5–5 4,5 мA
SSM2302 2 1.4 84 - 98 -67 2,5–5 6,6 мA
SSM2304 2 2 84 - 98 -67 2,5–5 6,6 мA

Литература

  1. International Rectifier, Application Note AN-978, HV Floating MOS-Gate Driver ICs.
  2. Nyboe F., et al. Time Domain Analysis of Open-Loop Distortion in Class D Amplifier Output Stages. The AES 27th International Conference, Copenhagen, Denmark, September 2005.
  3. Zhang L., et al. Real-Time Power-Supply Compensation for Noise-Shaped Class D Amplifier. The 117th AES Convention, San Francisco, CA, October 2004.
  4. Nielsen K. A Review and Comparison of Pulse-Width Modulation (PWM) Methods for Analog and Digital Input Switching Power Amplifiers. Te 102nd AES Convention, Munich, Germany, March 1997.
  5. Putzeys B. Simple Self-Oscillating Class D Amplifier with Full Output Filter Control. The 118th AES Convention, Barcelona, Spain, May 2005.
  6. Gaalaas E., et al. Integrated Stereo Delta-Sigma Class D Amplifier. IEEE J. Solid-State Circuits, vol. 40, no. 12, December 2005. About the AD199x Modulator.
  7. Morrow P., et al. A 20-W Stereo Class D Audio Output Stage in 0.6 mm BCDMOS Technology. IEEE J. Solid-State Circuits, vol. 39, no. 11, November 2004. About the AD199x Switching Output Stage.
  8. PWM and Class D Amplifiers with ADSP-BF535 Blackfin® Processors. Analog Devices Engineer-to- Engineer Note EE-242. ADI website: www.analog.com (Search) EE-242 (Go)

Вам также будет интересно:

Читы и консольные команды для Counter-Strike: Global Offensive Команда в кс го чтобы летать
В этой статье мы рассмотрим некоторые из наиболее полезных и забавных консольных команд в...
Arduino и четырехразрядный семисегментный индикатор Семисегментный индикатор 4 разряда распиновка
В сегодняшней статье поговорим о 7-сегментных индикаторах и о том, как их «подружить» с...
«Рабочие лошадки» Hi-Fi: собираем бюджетную систему Хороший бюджетный hi fi плеер
Выбор плеера - это сложный процесс, иногда человек желает получить не просто коробочку,...
Как правильно пользоваться сургучными печатями
На самом деле, сургуч - это смесь смол, окрашенная в определенный цвет. Если у вас на руках...
Лагает fallout 4 как снизить графику
10 ноября состоялся релиз долгожданной игры на ПК, PlayStation 4 и Xbox One, и постепенно...